In this paper we give a review of the recent progress on the focusing generalized Hartree equation, which is a nonlinear Schrodinger-type equation with the nonlocal nonlinearity, expressed as a convolution with the Riesz potential. We describe the local well-posedness in H-1 and H-s settings, discuss the extension to the global existence and scattering, or finite time blow-up. We point out different techniques used to obtain the above results, and then show the numerical investigations of the stable blow-up in the L-2 -critical setting. We finish by showing known analytical results about the stable blow-up dynamics in the L-2 -critical setting.
机构:
Sichuan Normal Univ, Sch Math Sci & VC & VR Key Lab, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Sch Math Sci & VC & VR Key Lab, Chengdu 610066, Peoples R China
Zhu, Shihui
Tian, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci & VC & VR Key Lab, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Sch Math Sci & VC & VR Key Lab, Chengdu 610066, Peoples R China