The Weil height in terms of an auxiliary polynomial

被引:3
|
作者
Samuels, Charles L. [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
Lehmer's problem; Mahler measure; Weil height;
D O I
10.4064/aa128-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [31] Bounding the fitting height in terms of the exponent
    Fumagalli, Francesco
    Leinen, Felix
    Puglisi, Orazio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (04) : 1869 - 1874
  • [32] WEIL TRIPLET ASSOCIATED TO A HOMOGENEOUS POLYNOMIAL AND TO A PREHOMOGENEOUS VECTOR-SPACE
    RUBENTHALER, H
    SCHIFFMANN, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (10): : 407 - 410
  • [34] On the height of Graeffe transforms of a polynomial with integer coefficients
    Cipu, Mihai
    Kientega, Gerard
    Mignotte, Maurice
    Nikiema, Salifou
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (02): : 213 - 231
  • [35] An explicit height bound for the classical modular polynomial
    Reinier Bröker
    Andrew V. Sutherland
    The Ramanujan Journal, 2010, 22 : 293 - 313
  • [36] An explicit height bound for the classical modular polynomial
    Broeker, Reinier
    Sutherland, Andrew V.
    RAMANUJAN JOURNAL, 2010, 22 (03): : 293 - 313
  • [37] Local height transformation through polynomial regression
    Ligas, Marcin
    Banasik, Piotr
    GEODESY AND CARTOGRAPHY, 2012, 61 (01): : 3 - 17
  • [38] Prime ideals of finite height in polynomial rings
    Gilmer, R
    Heinzer, W
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 9 - 20
  • [39] Optimal bounds for the difference between the Weil height and the height of Neron-Tate on elliptic curves over Q
    Bruin, Peter
    ACTA ARITHMETICA, 2013, 160 (04) : 385 - 397