The Weil height in terms of an auxiliary polynomial

被引:3
|
作者
Samuels, Charles L. [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
Lehmer's problem; Mahler measure; Weil height;
D O I
10.4064/aa128-3-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [21] Reduction of Weil's height in a compositum of ray class field
    Plessis, Arnaud
    JOURNAL OF NUMBER THEORY, 2019, 205 : 246 - 276
  • [22] An auxiliary tool to determine the height of the boundary layer
    Johansson, C
    Bergström, H
    BOUNDARY-LAYER METEOROLOGY, 2005, 115 (03) : 423 - 432
  • [23] An Auxiliary Tool to Determine the Height of the Boundary Layer
    Cecilia Johansson
    Hans Bergström
    Boundary-Layer Meteorology, 2005, 115 : 423 - 432
  • [24] On the height of the powers of a polynomial with integer coefficients 
    Cipu, Mihai
    Kientega, Gerard
    Mignotte, Maurice
    Nikiema, Salifou
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (02): : 157 - 175
  • [25] The classification of polynomial orderings on monadic terms
    Cropper, N
    Martin, U
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2001, 12 (03) : 197 - 226
  • [26] Bounds for the terms in a harmonic polynomial expansion
    Aldred, MP
    Armitage, DH
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 325 - 327
  • [27] Constant terms in powers of a Laurent polynomial
    Duistermaat, JJ
    van der Kallen, W
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1998, 9 (02): : 221 - 231
  • [28] COMPUTER CALCULATION OF POLYNOMIAL PRODUCT TERMS
    TAPSCOTT, RE
    JOURNAL OF CHEMICAL EDUCATION, 1972, 49 (07) : 479 - &
  • [29] The Classification of Polynomial Orderings on Monadic Terms
    Nick Cropper
    Ursula Martin
    Applicable Algebra in Engineering, Communication and Computing, 2001, 12 : 197 - 226
  • [30] Bounding the fitting height in terms of the exponent
    Francesco Fumagalli
    Felix Leinen
    Orazio Puglisi
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 (4): : 1869 - 1874