Automatic History Matching in Petroleum Reservoirs Using the TSVD Method

被引:0
|
作者
dos Santos Amorim, Elisa Portes [1 ]
Goldfeld, Paulo [2 ]
Dickstein, Flavio [2 ]
dos Santos, Rodrigo Weber [1 ]
Xavier, Carolina Ribeiro [1 ]
机构
[1] Univ Fed Juiz de Fora, Dept Comp Sci, Juiz De Fora, MG, Brazil
[2] Univ Fed Rio de Janeiro, Dept Appl Math, Rio De Janeiro, RJ, Brazil
关键词
Reservoir simulation; History Matching; Optimization; TSVD; Adjoint formulation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
History matching is an important inverse problem extensively used to estimate petrophysical properties of an oil reservoir by matching a numerical simulation to the reservoir's history of oil production. In this work, we present a method for the resolution of a history matching problem that aims to estimate the permeability field of a reservoir using the pressure and the flow rate observed in the wells. The reservoir simulation is based on a two-phase incompressible flow model. The method combines the truncated singular value decomposition (TSVD) and the Gauss-Newton algorithms. The number of parameters to estimate depends on how many gridblocks are used to discretize the reservoir. In general, this number is large and the inverse problem is ill-posed. The TSVD method regularizes the problem and decreases considerably the computational effort necessary to solve it. To compute the TSVD we used the Lanczos method combined with numerical implementations of the derivative and of the adjoint formulation of the problem.
引用
收藏
页码:475 / +
页数:3
相关论文
共 50 条
  • [21] Improved history matching of channelized reservoirs using a novel deep learning-based parametrization method
    Yousefzadeh, Reza
    Ahmadi, Mohammad
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 229
  • [22] History matching production data and uncertainty assessment with an efficient TSVD parameterization algorithm
    Shirangi, Mehrdad Gharib
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 113 : 54 - 71
  • [23] History Matching of Naturally Fractured Reservoirs Using a Deep Sparse Autoencoder
    Zhang, Kai
    Zhang, Jinding
    Ma, Xiaopeng
    Yao, Chuanjin
    Zhang, Liming
    Yang, Yongfei
    Wang, Jian
    Yao, Jun
    Zhao, Hui
    SPE JOURNAL, 2021, 26 (04): : 1700 - 1721
  • [24] A review of automatic history matching
    Abdulrazzaq F.N.
    Hasan O.F.
    Materials Today: Proceedings, 2023, 80 : 3817 - 3822
  • [25] Optimization for automatic history matching
    Wang, Shuguang
    Zhao, Guozhong
    Xu, Luobin
    Guo, Dezhi
    Sun, Shuyan
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2005, 2 : 131 - 137
  • [26] Parallel Automatic History Matching Algorithm Using Reinforcement Learning
    Alolayan, Omar S.
    Alomar, Abdullah O.
    Williams, John R.
    ENERGIES, 2023, 16 (02)
  • [27] IMPROVED RESERVOIR CHARACTERIZATION USING AUTOMATIC HISTORY MATCHING PROCEDURES
    TAN, TB
    KALOGERAKIS, N
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1993, 32 (06): : 26 - 33
  • [28] An Automatic Extraction Method for Lakes and Reservoirs Using Satellite Images
    Meng, Lingkui
    Zhang, Zhiyuan
    Zhang, Wen
    Ye, Jinan
    Wu, Chenhan
    Chen, Deqing
    Song, Chao
    IEEE ACCESS, 2019, 7 : 62443 - 62456
  • [29] An automatic history matching method based on ensemble and neural architecture search
    Zhang L.
    Chen X.
    Li G.
    Ma X.
    Zhang K.
    Gu J.
    Yao J.
    Wang J.
    Sun H.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2022, 46 (02): : 127 - 136
  • [30] Automatic history matching method based on deep learning with ensemble smoother
    Ma X.
    Zhang K.
    Chen X.
    Cao Q.
    Yao C.
    Gu J.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2020, 44 (04): : 68 - 76