Parallel Automatic History Matching Algorithm Using Reinforcement Learning

被引:6
|
作者
Alolayan, Omar S. [1 ]
Alomar, Abdullah O. [2 ]
Williams, John R. [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[2] MIT, Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
artificial intelligence; reinforcement learning; parallel actor-critic; history matching; reservoir simulation; ENSEMBLE KALMAN FILTER; MEDIA;
D O I
10.3390/en16020860
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reformulating the history matching problem from a least-square mathematical optimization problem into a Markov Decision Process introduces a method in which reinforcement learning can be utilized to solve the problem. This method provides a mechanism where an artificial deep neural network agent can interact with the reservoir simulator and find multiple different solutions to the problem. Such a formulation allows for solving the problem in parallel by launching multiple concurrent environments enabling the agent to learn simultaneously from all the environments at once, achieving significant speed up.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] NEW ALGORITHM FOR AUTOMATIC HISTORY MATCHING
    CHEN, WH
    GAVALAS, GR
    SEINFELD, JH
    WASSERMAN, ML
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1974, 14 (06): : 593 - 608
  • [2] Stochastic optimization algorithm for automatic history matching
    Gao, Guohua
    Li, Gaoming
    Reynolds, Albert C.
    SPE JOURNAL, 2007, 12 (02): : 196 - 208
  • [3] NEW ALGORITHM FOR AUTOMATIC HISTORY MATCHING.
    Chen, W.H.
    Gavalas, G.R.
    Seinfeld, J.H.
    Wasserman, M.L.
    Society of Petroleum Engineers of AIME Journal, 1974, 14 (06): : 593 - 608
  • [4] An Automatic History Matching Module with Distributed and Parallel Computing
    Liang, B.
    Sepehrnoori, K.
    Delshad, M.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2009, 27 (10) : 1092 - 1108
  • [5] A Parallel Hybrid Implementation Using Genetic Algorithm, GRASP and Reinforcement Learning
    Queiroz dos Santos, Joao Paulo
    de Lima Junior, Francisco Chagas
    Magalhaes, Rafael Marrocos
    de Melo, Jorge Dantas
    Doria Neto, Adriao Duarte
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2502 - +
  • [6] A continuous learning algorithm for history matching
    Cavalcante, Cristina C. B.
    Maschio, Celio
    Santos, Antonio Alberto S.
    Schiozer, Denis
    Rocha, Anderson
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 543 - 568
  • [7] Automatic History Matching Using the Integration of Response Surface Modeling with a Genetic Algorithm
    Monfared, A. Dehghan
    Helalizadeh, A.
    Parvizi, H.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2012, 30 (04) : 360 - 374
  • [8] An improved implementation of the LBFGS algorithm for automatic history matching
    Gao, G
    Reynolds, AC
    SPE JOURNAL, 2006, 11 (01): : 5 - 17
  • [9] An improved implementation of the LBFGS algorithm for automatic history matching
    Chevron Corp., Houston, TX, United States
    不详
    SPE J, 2006, 1 (5-18):
  • [10] Automatic generation of macro-actions using genetic algorithm for reinforcement learning
    Tateyama, T
    Kawata, S
    Oguchi, T
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 286 - 289