Graphene oxide-supported nanoscale zero-valent iron composites for the removal of atrazine from aqueous solution

被引:46
|
作者
Xing, Rong [1 ]
He, Jingjing [1 ]
Hao, Pulin [1 ]
Zhou, Wenjun [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Organ Pollut Proc & Control, Hangzhou 310058, Zhejiang, Peoples R China
关键词
GO/nZVI composites; Synergetic effect; Adsorption; Dechlorination; PLASMA TECHNIQUE; WATER TREATMENT; WASTE-WATER; NANOPARTICLES; DEGRADATION; ADSORPTION; DECHLORINATION; SOIL; TRICHLOROETHYLENE; CATALYST;
D O I
10.1016/j.colsurfa.2020.124466
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide-supported nano zero-valent iron (GO/nZVI) composites were successfully synthesized using a self-assembly method then characterized by various techniques. The results indicate that nZVI can be uniformly dispersed on the flat surface of GO and immersed into the wrinkles of GO, and both the defects structure, specific surface area and pore volume of GO/nZVI increased relative to those of GO and nZVI. These structure changes improve the reactivity of nZVI and adsorption capacity of GO, and alter the adsorption sites. The ability of GO/nZVI to remove atrazine was investigated by batch experiments according to various parameters. It was found that GO/nZVI can significantly increase the removal efficiency of atrazine compared to the pristine GO and nZVI and a synergetic effect occurred between GO and nZVI for atrazine removal. A combination of atrazine adsorption by GO and atrazine reduction by nZVI on GO/nZVI was proposed as the mechanism of atrazine removal, among the adsorption was the major process governed by pi-pi stacking of wrinkles, pore-filling of mesopores, and pi-pi EDA of GO defect sites. The results also suggested that GO/nZVI exhibited high reactivity under a wide pH range due to the mutual balancing effect between reduction and adsorption. In addition, GO/nZVI was easily separated from water and exhibited good stability. Therefore, GO/nZVI composites can be suitable as excellent materials for the treatment of contaminated water.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Removal of Cr(Ⅵ) in aqueous solution by amorphous zero-valent iron supported on attapulgite
    Zheng C.-L.
    Lin Z.-S.
    Wang H.
    Wang Z.-X.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2022, 32 (11): : 3434 - 3447
  • [42] Aqueous phosphate removal using nanoscale zero-valent iron
    Almeelbi, Talal
    Bezbaruah, Achintya
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (07)
  • [43] Polyaniline/attapulgite-supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution
    Xu, Hui
    Zhang, Yajuan
    Cheng, Yong
    Tian, Weiguo
    Zhao, Zeting
    Tang, Jin
    ADSORPTION SCIENCE & TECHNOLOGY, 2019, 37 (3-4) : 217 - 235
  • [44] Aqueous phosphate removal using nanoscale zero-valent iron
    Talal Almeelbi
    Achintya Bezbaruah
    Journal of Nanoparticle Research, 2012, 14
  • [45] Preparation of tea residue supported nanoscale zero-valent iron and its removal of methanil yellow G from aqueous solution
    Lin, Yu-Man
    Liu, Xiao-Bin
    Sun, Qiong-Hua
    Chen, Zu-Liang
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (SUPPL. 3): : 579 - 582
  • [46] Removal of Cr(VI) from aqueous solution using organically modified attapulgite-supported nanoscale zero-valent iron
    Xu, Hai-Yu
    Zhang, Ming-Qing
    Chen, Yi-Yu
    Zhongguo Huanjing Kexue/China Environmental Science, 2019, 39 (12): : 5079 - 5084
  • [47] Characterization of nanoscale zero-valent iron supported on granular activated carbon and its application in removal of acrylonitrile from aqueous solution
    Xiao, Jianan
    Gao, Baoyu
    Yue, Qinyan
    Sun, Yuanyuan
    Kong, Jiaojiao
    Gao, Yuan
    Li, Qian
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2015, 55 : 152 - 158
  • [48] Removal of para-nitrochlorobenzene from aqueous solution on surfactant-modified nanoscale zero-valent iron/graphene nanocomposites
    Wu, Yan
    Luo, Hanjin
    Wang, Hou
    ENVIRONMENTAL TECHNOLOGY, 2014, 35 (21) : 2698 - 2707
  • [49] Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite
    Kim, Seol Ah
    Kamala-Kannan, Seralathan
    Lee, Kui-Jae
    Park, Yool-Jin
    Shea, Patrick J.
    Lee, Wang-Hyu
    Kim, Hyung-Moo
    Oh, Byung-Taek
    CHEMICAL ENGINEERING JOURNAL, 2013, 217 : 54 - 60
  • [50] Removal of lead(II) from aqueous solution with amino-functionalized nanoscale zero-valent iron
    Liu, Qingyang
    Bei, Yiling
    Zhou, Feng
    CENTRAL EUROPEAN JOURNAL OF CHEMISTRY, 2009, 7 (01): : 79 - 82