Graphene oxide-supported nanoscale zero-valent iron composites for the removal of atrazine from aqueous solution

被引:46
|
作者
Xing, Rong [1 ]
He, Jingjing [1 ]
Hao, Pulin [1 ]
Zhou, Wenjun [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Prov Key Lab Organ Pollut Proc & Control, Hangzhou 310058, Zhejiang, Peoples R China
关键词
GO/nZVI composites; Synergetic effect; Adsorption; Dechlorination; PLASMA TECHNIQUE; WATER TREATMENT; WASTE-WATER; NANOPARTICLES; DEGRADATION; ADSORPTION; DECHLORINATION; SOIL; TRICHLOROETHYLENE; CATALYST;
D O I
10.1016/j.colsurfa.2020.124466
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide-supported nano zero-valent iron (GO/nZVI) composites were successfully synthesized using a self-assembly method then characterized by various techniques. The results indicate that nZVI can be uniformly dispersed on the flat surface of GO and immersed into the wrinkles of GO, and both the defects structure, specific surface area and pore volume of GO/nZVI increased relative to those of GO and nZVI. These structure changes improve the reactivity of nZVI and adsorption capacity of GO, and alter the adsorption sites. The ability of GO/nZVI to remove atrazine was investigated by batch experiments according to various parameters. It was found that GO/nZVI can significantly increase the removal efficiency of atrazine compared to the pristine GO and nZVI and a synergetic effect occurred between GO and nZVI for atrazine removal. A combination of atrazine adsorption by GO and atrazine reduction by nZVI on GO/nZVI was proposed as the mechanism of atrazine removal, among the adsorption was the major process governed by pi-pi stacking of wrinkles, pore-filling of mesopores, and pi-pi EDA of GO defect sites. The results also suggested that GO/nZVI exhibited high reactivity under a wide pH range due to the mutual balancing effect between reduction and adsorption. In addition, GO/nZVI was easily separated from water and exhibited good stability. Therefore, GO/nZVI composites can be suitable as excellent materials for the treatment of contaminated water.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): selenium removal mechanism
    Feiyang Sun
    Yuhuan Zhu
    Xinyang Liu
    Zifang Chi
    Environmental Science and Pollution Research, 2023, 30 : 27560 - 27569
  • [32] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Li, Xiaoyan
    Zhang, Ming
    Liu, Yibao
    Li, Xun
    Liu, Yunhai
    Hua, Rong
    He, Caiting
    WATER QUALITY EXPOSURE AND HEALTH, 2013, 5 (01): : 31 - 40
  • [33] Removal of U(VI) in Aqueous Solution by Nanoscale Zero-Valent Iron(nZVI)
    Xiaoyan Li
    Ming Zhang
    Yibao Liu
    Xun Li
    Yunhai Liu
    Rong Hua
    Caiting He
    Water Quality, Exposure and Health, 2013, 5 : 31 - 40
  • [34] Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron
    Ma, Fengfeng
    Zhao, Baowei
    Diao, Jingru
    Jiang, Yufeng
    Zhang, Jian
    RSC ADVANCES, 2020, 10 (64) : 39217 - 39225
  • [35] Phosphate removal from aqueous solutions by nanoscale zero-valent iron
    Wu, Donglei
    Shen, Yanhong
    Ding, Aqiang
    Qiu, Mengyu
    Yang, Qi
    Zheng, Shuangshuang
    ENVIRONMENTAL TECHNOLOGY, 2013, 34 (18) : 2663 - 2669
  • [36] Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution
    Petala, Eleni
    Dimos, Konstantinos
    Douvalis, Alexios
    Bakas, Thomas
    Tucek, Jiri
    Zboril, Radek
    Karakassides, Michael A.
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 261 : 295 - 306
  • [37] Removal of methyl orange from aqueous solution using HJ clay-supported nanoscale zero-valent iron
    Zhao, Ying
    Li, Xiaoguang
    Shi, Qiantao
    Ge, Jie
    Xi, Beidou
    Gong, Bin
    Li, Rui
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [38] Removal of spironolactone from aqueous solution using bentonite-supported nanoscale zero-valent iron and activated charcoal
    Sulaiman, Saleh
    Al-Jabari, Mohammed
    DESALINATION AND WATER TREATMENT, 2020, 173 : 283 - 293
  • [39] Removal of phenol from aqueous solution using persulfate activated with nanoscale zero-valent iron
    Tunc, Muslun Sara
    Tepe, Ozlem
    DESALINATION AND WATER TREATMENT, 2017, 74 : 269 - 277
  • [40] Nanoscale zero-valent iron/zinc oxide flower-like heterostructure composites: synthesis and removal of selenium in aqueous solution
    Bu, Xiaohai
    Yang, Jintao
    Zhang, Xian
    Li, Dongxian
    Feng, Mingxin
    Fu, Qiang
    MICRO & NANO LETTERS, 2020, 15 (09) : 582 - 585