DeepNeuro: an open-source deep learning toolbox for neuroimaging

被引:33
|
作者
Beers, Andrew [1 ]
Brown, James [1 ]
Chang, Ken [1 ]
Hoebel, Katharina [1 ]
Patel, Jay [1 ]
Ly, K. Ina [1 ,3 ]
Tolaney, Sara M. [2 ]
Brastianos, Priscilla [3 ]
Rosen, Bruce [1 ]
Gerstner, Elizabeth R. [1 ,3 ]
Kalpathy-Cramer, Jayashree [1 ]
机构
[1] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Harvard Med Sch, Massachusetts Gen Hosp, Div Neurooncol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Neuroimaging; Deep learning; Preprocessing; Augmentation; Docker; PLATFORM;
D O I
10.1007/s12021-020-09477-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Translating deep learning research from theory into clinical practice has unique challenges, specifically in the field of neuroimaging. In this paper, we present DeepNeuro, a Python-based deep learning framework that puts deep neural networks for neuroimaging into practical usage with a minimum of friction during implementation. We show how this framework can be used to design deep learning pipelines that can load and preprocess data, design and train various neural network architectures, and evaluate and visualize the results of trained networks on evaluation data. We present a way of reproducibly packaging data pre- and postprocessing functions common in the neuroimaging community, which facilitates consistent performance of networks across variable users, institutions, and scanners. We show how deep learning pipelines created with DeepNeuro can be concisely packaged into shareable Docker and Singularity containers with user-friendly command-line interfaces.
引用
收藏
页码:127 / 140
页数:14
相关论文
共 50 条
  • [21] DeepRec: An Open-source Toolkit for Deep Learning based Recommendation
    Zhang, Shuai
    Tay, Yi
    Yao, Lina
    Wu, Bin
    Sun, Aixin
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6581 - 6583
  • [22] Deep learning-enhanced, open-source eigenmode expansion
    Hammond, Ian M.
    Hammond, Alec M.
    Camacho, Ryan M.
    OPTICS LETTERS, 2022, 47 (06) : 1383 - 1386
  • [23] ImJoy: an open-source computational platform for the deep learning era
    Ouyang, Wei
    Mueller, Florian
    Hjelmare, Martin
    Lundberg, Emma
    Zimmer, Christophe
    NATURE METHODS, 2019, 16 (12) : 1199 - 1200
  • [24] DeepPlayer: An open-source SignalPlant plugin for deep learning inference
    Plesinger, Filip
    Nejedly, Petr
    Koscova, Zuzana
    Rohr, Maurice
    Viscor, Ivo
    Smisek, Radovan
    Ivora, Adam
    Leinveber, Pavel
    Curila, Karol
    Antink, Christoph Hoog
    SOFTWARE-PRACTICE & EXPERIENCE, 2023, 53 (02): : 455 - 464
  • [25] Guest Editorial: Deep Learning in Open-Source Software Ecosystems
    Gao, Honghao
    Zhang, Zijian
    Duran Barroso, Ramon J.
    Luo, Xiong
    AUTOMATED SOFTWARE ENGINEERING, 2022, 29 (02)
  • [26] ImJoy: an open-source computational platform for the deep learning era
    Wei Ouyang
    Florian Mueller
    Martin Hjelmare
    Emma Lundberg
    Christophe Zimmer
    Nature Methods, 2019, 16 : 1199 - 1200
  • [27] Guest Editorial: Deep Learning in Open-Source Software Ecosystems
    Honghao Gao
    Zijian (Alex) Zhang
    Ramón J. Durán Barroso
    Xiong Luo
    Automated Software Engineering, 2022, 29
  • [28] Open-source deep-learning software for bioimage segmentation
    Lucas, Alice M.
    Ryder, Pearl, V
    Li, Bin
    Cimini, Beth A.
    Eliceiri, Kevin W.
    Carpenter, Anne E.
    MOLECULAR BIOLOGY OF THE CELL, 2021, 32 (09) : 823 - 829
  • [29] The masked priming toolbox: an open-source MATLAB toolbox for masked priming researchers
    Wilson, Andrew D.
    Tresilian, James
    Schlaghecken, Friederike
    BEHAVIOR RESEARCH METHODS, 2011, 43 (01) : 210 - 214
  • [30] The masked priming toolbox: an open-source MATLAB toolbox for masked priming researchers
    Andrew D. Wilson
    James Tresilian
    Friederike Schlaghecken
    Behavior Research Methods, 2011, 43 : 210 - 214