DeepNeuro: an open-source deep learning toolbox for neuroimaging

被引:33
|
作者
Beers, Andrew [1 ]
Brown, James [1 ]
Chang, Ken [1 ]
Hoebel, Katharina [1 ]
Patel, Jay [1 ]
Ly, K. Ina [1 ,3 ]
Tolaney, Sara M. [2 ]
Brastianos, Priscilla [3 ]
Rosen, Bruce [1 ]
Gerstner, Elizabeth R. [1 ,3 ]
Kalpathy-Cramer, Jayashree [1 ]
机构
[1] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Harvard Med Sch, Massachusetts Gen Hosp, Div Neurooncol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Neuroimaging; Deep learning; Preprocessing; Augmentation; Docker; PLATFORM;
D O I
10.1007/s12021-020-09477-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Translating deep learning research from theory into clinical practice has unique challenges, specifically in the field of neuroimaging. In this paper, we present DeepNeuro, a Python-based deep learning framework that puts deep neural networks for neuroimaging into practical usage with a minimum of friction during implementation. We show how this framework can be used to design deep learning pipelines that can load and preprocess data, design and train various neural network architectures, and evaluate and visualize the results of trained networks on evaluation data. We present a way of reproducibly packaging data pre- and postprocessing functions common in the neuroimaging community, which facilitates consistent performance of networks across variable users, institutions, and scanners. We show how deep learning pipelines created with DeepNeuro can be concisely packaged into shareable Docker and Singularity containers with user-friendly command-line interfaces.
引用
收藏
页码:127 / 140
页数:14
相关论文
共 50 条
  • [1] DeepNeuro: an open-source deep learning toolbox for neuroimaging
    Andrew Beers
    James Brown
    Ken Chang
    Katharina Hoebel
    Jay Patel
    K. Ina Ly
    Sara M. Tolaney
    Priscilla Brastianos
    Bruce Rosen
    Elizabeth R. Gerstner
    Jayashree Kalpathy-Cramer
    Neuroinformatics, 2021, 19 : 127 - 140
  • [2] ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing
    Thibeau-Sutre, Elina
    Diaz, Mauricio
    Hassanaly, Ravi
    Routier, Alexandre
    Dormont, Didier
    Colliot, Olivier
    Burgos, Ninon
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [3] Recent advances in the open-source ClinicaDL software for reproducible neuroimaging with deep learning
    Hassanaly, Ravi
    Brianceau, Camille
    Diaz, Mauricio
    Loizillon, Sophie
    Thibeau-Sutre, Elina
    Cassereau, Nathan
    Colliot, Olivier
    Burgos, Ninon
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [4] Open-source toolbox for electromigrative separations
    Marquez Damian, Santiago
    Schaumburg, Federico
    Kler, Pablo A.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 237 : 244 - 252
  • [5] The open-source neuroimaging research enterprise
    Marcus, Daniel S.
    Archie, Kevin A.
    Olsen, Timothy R.
    Ramaratnam, Mohana
    JOURNAL OF DIGITAL IMAGING, 2007, 20 (Suppl 1) : 130 - 138
  • [6] The Open-Source Neuroimaging Research Enterprise
    Daniel S. Marcus
    Kevin A. Archie
    Timothy R. Olsen
    Mohana Ramaratnam
    Journal of Digital Imaging, 2007, 20 : 130 - 138
  • [7] CircuitQ: an open-source toolbox for superconducting circuits
    Aumann, Philipp
    Menke, Tim
    Oliver, William D.
    Lechner, Wolfgang
    NEW JOURNAL OF PHYSICS, 2022, 24 (09):
  • [8] Fingermark Quality Assessment: An Open-Source Toolbox
    Oblak, Tim
    Haraksim, Rudolf
    Beslay, Laurent
    Peer, Peter
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2021), 2021, 315
  • [9] A protocol for working with open-source neuroimaging datasets
    Horien, Corey
    Lee, Kangjoo
    Westwater, Margaret L.
    Noble, Stephanie
    Tejavibulya, Link
    Kayani, Teimur
    Constable, R. Todd
    Scheinost, Dustin
    STAR PROTOCOLS, 2022, 3 (01):
  • [10] FastField: An open-source toolbox for efficient approximation of deep brain stimulation electric fields
    Baniasadi, Mehri
    Proverbio, Daniele
    Goncalves, Jorge
    Hertel, Frank
    Husch, Andreas
    NEUROIMAGE, 2020, 223