Identification of Hammerstein nonlinear ARMAX systems

被引:374
|
作者
Ding, F
Chen, TW [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] So Yangtze Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
recursive identification; parameter estimation; convergence properties; stochastic gradient; least squares; Hammersteinm models; Wiener models; Martingale convergence theorem;
D O I
10.1016/j.automatica.2005.03.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two identification algorithms, an iterative least-squares and a recursive least-squares, are developed for Hammerstein nonlinear systems with memoryless nonlinear blocks and linear dynamical blocks described by ARMAX/CARMA models. The basic idea is to replace unmeasurable noise terms in the information vectors by their estimates, and to compute the noise estimates based on the obtained parameter estimates. Convergence properties of the recursive algorithm in the stochastic framework show that the parameter estimation error consistently converges to zero under the generalized persistent excitation condition. The simulation results validate the algorithms proposed. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1479 / 1489
页数:11
相关论文
共 50 条