Identification of Hammerstein nonlinear ARMAX systems

被引:374
|
作者
Ding, F
Chen, TW [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] So Yangtze Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
recursive identification; parameter estimation; convergence properties; stochastic gradient; least squares; Hammersteinm models; Wiener models; Martingale convergence theorem;
D O I
10.1016/j.automatica.2005.03.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two identification algorithms, an iterative least-squares and a recursive least-squares, are developed for Hammerstein nonlinear systems with memoryless nonlinear blocks and linear dynamical blocks described by ARMAX/CARMA models. The basic idea is to replace unmeasurable noise terms in the information vectors by their estimates, and to compute the noise estimates based on the obtained parameter estimates. Convergence properties of the recursive algorithm in the stochastic framework show that the parameter estimation error consistently converges to zero under the generalized persistent excitation condition. The simulation results validate the algorithms proposed. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1479 / 1489
页数:11
相关论文
共 50 条
  • [21] Recursive maximum likelihood method for the identification of Hammerstein ARMAX system
    Ma, Liang
    Liu, Xinggao
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (13-14) : 6523 - 6535
  • [22] A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems
    Muhammad Saeed Aslam
    Naveed Ishtiaq Chaudhary
    Muhammad Asif Zahoor Raja
    Nonlinear Dynamics, 2017, 87 : 519 - 533
  • [23] USE OF HAMMERSTEIN MODELS IN IDENTIFICATION OF NONLINEAR-SYSTEMS
    ESKINAT, E
    JOHNSON, SH
    LUYBEN, WL
    AICHE JOURNAL, 1991, 37 (02) : 255 - 268
  • [24] A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems
    Aslam, Muhammad Saeed
    Chaudhary, Naveed Ishtiaq
    Raja, Muhammad Asif Zahoor
    NONLINEAR DYNAMICS, 2017, 87 (01) : 519 - 533
  • [25] Recursive Identification for ARMAX Systems
    Chen Hanfu
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 3, 2008, : 199 - 203
  • [26] Identification of Hammerstein/Wiener nonlinear systems with extended Kalman filters
    Kozek, M
    Jovanovic, N
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 969 - 974
  • [27] Identification and control of nonlinear systems using Fuzzy Hammerstein models
    Abonyi, J
    Babuska, R
    Botto, MA
    Szeifert, F
    Nagy, L
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (11) : 4302 - 4314
  • [28] New identification method of nonlinear systems based on Hammerstein models
    Xiang, Wei
    Chen, Zong-Hai
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2007, 24 (01): : 143 - 147
  • [29] AN ITERATIVE METHOD FOR IDENTIFICATION OF NONLINEAR SYSTEMS USING A HAMMERSTEIN MODEL
    NARENDRA, KS
    GALLMAN, PG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1966, AC11 (03) : 546 - &
  • [30] Global identification of nonlinear Hammerstein systems by recursive kernel approach
    Krzyzak, Adam
    Partyka, Marian A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1263 - E1272