Rigorous bounds for Renyi entropies of spherically symmetric potentials

被引:0
|
作者
Sanchez-Moreno, Pablo [1 ,2 ]
Zozor, Steeve [3 ]
Dehesa, Jesus S. [1 ,4 ]
机构
[1] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071\ Granada, Spain
[2] Univ Granada, Dept Mat Aplicada, Granada 18071, Spain
[3] Domaine Univ, GIPSA Lab, F-38402 St Martin Dheres, France
[4] Univ Granada, Dept Fis Atom, Granada 18071, Spain
关键词
Renyi entropy; Shannon entropy; spherically symmetric potentials; variational upper bounds; DENSITY-DEPENDENT QUANTITIES; INFORMATION ENTROPY; UNCERTAINTY; SYSTEMS;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Renyi and Shannon entropies are information-theoretic measures which have enabled to formulate the position-momentum uncertainty principle in a much more adequate and stringent way than the (variance-based) Heisenberg-like relation. Moreover, they are closely related to various energetic density-functionals of quantum systems. Here we find sharp upper bounds to these quantities in terms of the second order moment < r(2)> for general spherically symmetric potentials, which substantially improve previous results of this type, by means of the Reny maximization procedure with a covariance constraint due to Costa, Hero and Vignat [1]. The contributions to these bounds coming from the radial and angular parts of the physical wave functions are explicitly given.
引用
收藏
页码:192 / +
页数:2
相关论文
共 50 条
  • [31] Renyi entropies for bernoulli distributions
    Bialas, A.
    Czyz, W.
    Acta Physica Polonica, Series B., 2001, 32 (10): : 2793 - 2800
  • [32] Optimal Transport to Renyi Entropies
    Rioul, Olivier
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 143 - 150
  • [33] Computing scattering cross sections for spherically symmetric potentials
    Khachi, Anil
    AMERICAN JOURNAL OF PHYSICS, 2024, 92 (07) : 559 - 560
  • [34] METHOD OF CALCULATING PHASE SHIFTS FOR SPHERICALLY SYMMETRIC POTENTIALS
    EU, BC
    JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (07): : 2852 - &
  • [35] Relativistic corrections for the scattering matrix for spherically symmetric potentials
    Unterkofler, K
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 47 (02) : 183 - 198
  • [36] ON THE STATISTICAL ESTIMATION OF RENYI ENTROPIES
    Liitiainen, Elia
    Lendasse, Amaury
    Corona, Francesco
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 192 - 197
  • [37] Holographic phases of Renyi entropies
    Belin, Alexandre
    Maloney, Alexander
    Matsuura, Shunji
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [38] On Renyi entropies of order statistics
    Thapliyal, Richa
    Taneja, H. C.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (06)
  • [39] Holographic charged Renyi entropies
    Belin, Alexandre
    Hung, Ling-Yan
    Maloney, Alexander
    Matsuura, Shunji
    Myers, Robert C.
    Sierens, Todd
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [40] Renyi entropies in particle cascades
    Bialas, A
    Czyz, W
    Ostruszka, A
    ACTA PHYSICA POLONICA B, 2003, 34 (01): : 69 - 85