Rigorous bounds for Renyi entropies of spherically symmetric potentials

被引:0
|
作者
Sanchez-Moreno, Pablo [1 ,2 ]
Zozor, Steeve [3 ]
Dehesa, Jesus S. [1 ,4 ]
机构
[1] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071\ Granada, Spain
[2] Univ Granada, Dept Mat Aplicada, Granada 18071, Spain
[3] Domaine Univ, GIPSA Lab, F-38402 St Martin Dheres, France
[4] Univ Granada, Dept Fis Atom, Granada 18071, Spain
关键词
Renyi entropy; Shannon entropy; spherically symmetric potentials; variational upper bounds; DENSITY-DEPENDENT QUANTITIES; INFORMATION ENTROPY; UNCERTAINTY; SYSTEMS;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Renyi and Shannon entropies are information-theoretic measures which have enabled to formulate the position-momentum uncertainty principle in a much more adequate and stringent way than the (variance-based) Heisenberg-like relation. Moreover, they are closely related to various energetic density-functionals of quantum systems. Here we find sharp upper bounds to these quantities in terms of the second order moment < r(2)> for general spherically symmetric potentials, which substantially improve previous results of this type, by means of the Reny maximization procedure with a covariance constraint due to Costa, Hero and Vignat [1]. The contributions to these bounds coming from the radial and angular parts of the physical wave functions are explicitly given.
引用
收藏
页码:192 / +
页数:2
相关论文
共 50 条
  • [21] Sphere Renyi entropies
    Dowker, J. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (22)
  • [22] Velocity and velocity bounds in static spherically symmetric metrics
    Arraut, Ivan
    Batic, Davide
    Nowakowski, Marek
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (04): : 926 - 938
  • [23] Scaling of Renyi Entanglement Entropies of the Free Fermi-Gas Ground State: A Rigorous Proof
    Leschke, Hajo
    Sobolev, Alexander V.
    Spitzer, Wolfgang
    PHYSICAL REVIEW LETTERS, 2014, 112 (16)
  • [24] Sharp Bounds on Arimoto's Conditional Renyi Entropies Between Two Distinct Orders
    Sakai, Yuta
    Iwata, Ken-ichi
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [25] SPHERICALLY SYMMETRIC RIGOROUS SOLUTIONS IN BONNORS UNIFIED FIELD-THEORY
    PANT, DN
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1975, B 25 (01): : 175 - 190
  • [26] GENERALIZING GAUGE VARIANCE FOR SPHERICALLY SYMMETRIC-POTENTIALS
    CRAMPIN, M
    PRINCE, GE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12): : 2167 - 2175
  • [27] EXISTENCE AND COMPLETENESS OF WAVE OPERATORS FOR SPHERICALLY SYMMETRIC POTENTIALS
    PEARSON, DB
    WHOULD, DH
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1973, A 14 (04): : 765 - 780
  • [28] Casimir energies in spherically symmetric background potentials revisited
    Beauregard, Matthew
    Bordag, Michael
    Kirsten, Klaus
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (09)
  • [29] Casimir effect for smooth potentials on spherically symmetric pistons
    Morales-Almazan, Pedro
    Kirsten, Klaus
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (49)
  • [30] Renyi entropies of a black hole
    Bialas, A.
    Czyz, W.
    ACTA PHYSICA POLONICA B, 2008, 39 (08): : 1869 - 1880