Engineering conduction and valence band states in site-controlled pyramidal quantum dots

被引:7
|
作者
Mohan, A. [1 ]
Gallo, P. [1 ]
Felici, M. [1 ]
Dwir, B. [1 ]
Rudra, A. [1 ]
Faist, J. [2 ]
Kapon, E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
[2] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland
关键词
FINE-STRUCTURE; CONFINEMENT; ABSORPTION; EMISSION; WIRES;
D O I
10.1063/1.3601916
中图分类号
O59 [应用物理学];
学科分类号
摘要
of site-controlled InGaAs/GaAs quantum dots (QDs) grown into pyramidal recesses, by controlling their shape, size, and composition. QDs with CB level separation ranging from similar to 15 to 70 meV are obtained, useful in applications based on intraband transitions, e. g., QD photodetectors and QD cascade lasers. Moreover, by varying the aspect ratio and composition of the QDs we are able to switch the polarization of the dominant interband transition, a feature of interest for producing single photon emitters and QD amplifiers with prescribed polarization states (c) 2011 American Institute of Physics. [doi:10.1063/1.3601916]
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Charging dynamics of a floating gate transistor with site-controlled quantum dots
    Maier, P.
    Hartmann, F.
    Emmerling, M.
    Schneider, C.
    Hoefling, S.
    Kamp, M.
    Worschech, L.
    APPLIED PHYSICS LETTERS, 2014, 105 (05)
  • [42] Near-red emission from site-controlled pyramidal InGaN quantum dots -: art. no. 163121
    Pérez-Solórzano, V
    Gröning, A
    Jetter, M
    Riemann, T
    Christen, J
    APPLIED PHYSICS LETTERS, 2005, 87 (16) : 1 - 3
  • [43] Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength
    Maier, S.
    Berschneider, K.
    Steinl, T.
    Forchel, A.
    Hoefling, S.
    Schneider, C.
    Kamp, M.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (05)
  • [44] Electrical switching of photoluminescence of single site-controlled InAs quantum dots
    Schramm, A.
    Koski, E.
    Kontio, J. M.
    Tommila, J.
    Hakkarainen, T. V.
    Lupo, D.
    Guina, M.
    ELECTRONICS LETTERS, 2016, 52 (14) : 1240 - 1241
  • [45] Linewidth reduction of site-controlled InGaN quantum dots by surface passivation
    Teng, Chu-Hsiang
    Zhang, Lei
    Deng, Hui
    Ku, Pei-Cheng
    GALLIUM NITRIDE MATERIALS AND DEVICES VIII, 2013, 8625
  • [46] Single electron transport through site-controlled InAs quantum dots
    Cha, K. M.
    Shibata, K.
    Hirakawa, K.
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [47] Scalable fabrication of optical resonators with embedded site-controlled quantum dots
    Suenner, Thomas
    Schneider, Christian
    Strauss, Micha
    Huggenberger, Alexander
    Wiener, Daniel
    Hoefling, Sven
    Kamp, Martin
    Forchel, Alfred
    OPTICS LETTERS, 2008, 33 (15) : 1759 - 1761
  • [48] Site-controlled InAs quantum dots regrown on nonlithographically patterned GaAs
    Meneou, K
    Cheng, KY
    Zhang, ZH
    Tsai, CL
    Xu, CF
    Hsieh, KC
    APPLIED PHYSICS LETTERS, 2005, 86 (15) : 1 - 3
  • [49] Site-controlled growth of InP/GaInP quantum dots on GaAs substrates
    Baumann, V.
    Stumpf, F.
    Steinl, T.
    Forchel, A.
    Schneider, C.
    Hoefling, S.
    Kamp, M.
    NANOTECHNOLOGY, 2012, 23 (37)
  • [50] Ultrafast coherent manipulation of trions in site-controlled nanowire quantum dots
    Lagoudakis, K. G.
    McMahon, P. L.
    Dory, C.
    Fischer, K. A.
    Mueller, K.
    Borish, V.
    Dalacu, D.
    Poole, P. J.
    Reimer, M. E.
    Zwiller, V.
    Yamamoto, Y.
    Vuckovic, J.
    OPTICA, 2016, 3 (12): : 1430 - 1435