Engineering conduction and valence band states in site-controlled pyramidal quantum dots

被引:7
|
作者
Mohan, A. [1 ]
Gallo, P. [1 ]
Felici, M. [1 ]
Dwir, B. [1 ]
Rudra, A. [1 ]
Faist, J. [2 ]
Kapon, E. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
[2] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland
关键词
FINE-STRUCTURE; CONFINEMENT; ABSORPTION; EMISSION; WIRES;
D O I
10.1063/1.3601916
中图分类号
O59 [应用物理学];
学科分类号
摘要
of site-controlled InGaAs/GaAs quantum dots (QDs) grown into pyramidal recesses, by controlling their shape, size, and composition. QDs with CB level separation ranging from similar to 15 to 70 meV are obtained, useful in applications based on intraband transitions, e. g., QD photodetectors and QD cascade lasers. Moreover, by varying the aspect ratio and composition of the QDs we are able to switch the polarization of the dominant interband transition, a feature of interest for producing single photon emitters and QD amplifiers with prescribed polarization states (c) 2011 American Institute of Physics. [doi:10.1063/1.3601916]
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Nitrogen Incorporation Effects On Site-Controlled Quantum Dots
    Juska, G.
    Dimastrodonato, V.
    Mereni, L. O.
    Pelucchi, E.
    PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399
  • [22] High optical quality site-controlled quantum dots
    Pfau, T. J.
    Gushterov, A.
    Reithmaier, J. P.
    Cestier, I.
    Eisenstein, G.
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 1357 - 1359
  • [23] Site-controlled growth of InP/InGaP quantum dots
    Baumann, V.
    Stumpf, F.
    Kremling, S.
    Steinl, T.
    Forchel, A.
    Schneider, C.
    Hoefling, S.
    Kamp, M.
    2012 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS (IPRM), 2013, : 261 - 264
  • [24] Site-controlled InGaAs/GaAs pyramidal quantum dots grown by MOVPE on patterned substrates using triethylgallium
    Rigal, B.
    Jarlov, C.
    Rudra, A.
    Gallo, P.
    Lyasota, A.
    Dwir, B.
    Kapon, E.
    JOURNAL OF CRYSTAL GROWTH, 2015, 414 : 187 - 191
  • [25] Optical properties and symmetry optimization of spectrally (excitonically) uniform site-controlled GaAs pyramidal quantum dots
    Ranjbar Jahromi, Iman
    Juska, Gediminas
    Varo, Simone
    Basset, Francesco Basso
    Salusti, Francesco
    Trotta, Rinaldo
    Gocalinska, Agnieszka
    Mattana, Francesco
    Pelucchi, Emanuele
    APPLIED PHYSICS LETTERS, 2021, 118 (07)
  • [26] Quantum efficiency and oscillator strength of site-controlled InAs quantum dots
    Albert, F.
    Stobbe, S.
    Schneider, C.
    Heindel, T.
    Reitzenstein, S.
    Hoefling, S.
    Lodahl, P.
    Worschech, L.
    Forchel, A.
    APPLIED PHYSICS LETTERS, 2010, 96 (15)
  • [27] Micropillar lasers with site-controlled quantum dots as active medium
    Kaganskiy, Arsenty
    Kreinberg, Soren
    Porte, Xavier
    Reitzenstein, Stephan
    OPTICA, 2019, 6 (04): : 404 - 409
  • [28] Theory of Piezoelectric Fields in InGaAs Site-Controlled Quantum Dots
    Healy, Sorcha B.
    O'Reilly, Eoin P.
    QUANTUM DOTS 2010, 2010, 245
  • [29] Magneto-photoluminescence of heavy- and light-hole excitons in site-controlled pyramidal quantum dots
    Byszewski, M.
    Chalupar, B.
    Karlsson, K. F.
    Pelucchi, E.
    Oberli, D.
    Rudra, A.
    Kapon, E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (06): : 1873 - 1875
  • [30] Site-controlled self-organization of InAs quantum dots
    Kohmoto, S
    Nakamura, H
    Ishikawa, T
    Nishikawa, S
    Nishimura, T
    Asakawa, K
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 88 (2-3): : 292 - 297