PARTIAL REGULARITY FOR WEAK SOLUTIONS OF ANISOTROPIC LANE-EMDEN EQUATION
被引:2
|
作者:
Fazly, Mostafa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USAUniv Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
Fazly, Mostafa
[1
]
Li, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R ChinaUniv Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
Li, Yuan
[1
,2
]
机构:
[1] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
[2] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
We study positive weak solutions of the quasilinear Lane-Emden equation -Qu = u(alpha) in Omega subset of R-n, where alpha >= n+2/n-2, for n >= 3, is supercritical and the operator Q, known as Finsler-Laplacian or anisotropic Laplacian, is defined by Qu := Sigma(n)(i=1)partial derivative/partial derivative x(i)(F(del u)F-xi i(del u)). Here, F-xi i = partial derivative F/partial derivative xi(i) and F : R-n -> [0, +infinity) is a convex function of C-2(R-n\{0}), that satisfies positive homogeneity of first order and other certain assumptions. We prove that the Hausdorff dimension of singular set of u is less than n-2 alpha+1/alpha-1.
机构:
Univ Kairouan, Inst Super Math Appl & Informat, Kairouan, TunisiaUniv Claude Bernard Lyon 1, Inst Camille Jordan, UMR CNRS 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France