All real solutions of the Lane-Emden equation for n = 5 are obtained in terms of Jacobian and Weierstrass elliptic functions. A new family of solutions is found. It is expressed by remarkably simple formulae involving Jacobian elliptic functions only. The general properties and discrete scaling symmetries of these new solutions are discussed. We also comment on their possible applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4725414]