Boundedness of Riesz potentials in nonhomogeneous spaces

被引:0
|
作者
Hu Guoen [1 ]
Meng Yan [2 ]
Yang Dachun
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
关键词
Riesz potential; Lebesgue space; Hardy space; RBMO space; boundedness; non-doubling measure;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of linear operators including Riesz potentials on R(d) with a non-negative Radon measure mu, which only satisfies some growth condition, the authors prove that their boundedness in Lebesgue spaces is equivalent to their boundedness in the Hardy space or certain weak type endpoint estimates, respectively. As an application, the authors obtain several new end estimates.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 50 条
  • [41] NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE RIESZ POTENTIAL IN MODIFIED MORREY SPACES
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Zeren, Yusuf
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (04): : 491 - 506
  • [42] Boundedness of Dunkl-Riesz transforms on Dunkl-Besov spaces
    Lee, Ming-Yi
    Lin, Chin-Cheng
    Ooi, Keng Hao
    ILLINOIS JOURNAL OF MATHEMATICS, 2024, 68 (04)
  • [43] Boundedness of Generalized Riesz Transforms on Orlicz–Hardy Spaces Associated to Operators
    Jun Cao
    Der-Chen Chang
    Dachun Yang
    Sibei Yang
    Integral Equations and Operator Theory, 2013, 76 : 225 - 283
  • [44] ON BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY-TYPE SPACES
    Burenkov V.I.
    Senouci M.A.
    Journal of Mathematical Sciences, 2022, 266 (5) : 765 - 793
  • [45] Boundedness for Riesz transform associated with Schrödinger operators and its commutator on weighted Morrey spaces related to certain nonnegative potentials
    Yu Liu
    Lijuan Wang
    Journal of Inequalities and Applications, 2014
  • [46] Weighted Morrey spaces of variable exponent and Riesz potentials
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 984 - 1002
  • [47] Campanato-Morrey spaces and variable Riesz potentials
    Ohno, T.
    Shimomura, T.
    ACTA MATHEMATICA HUNGARICA, 2024, 174 (01) : 62 - 74
  • [48] Generalized Bessel and Riesz Potentials on Metric Measure Spaces
    J. Hu
    M. Zähle
    Potential Analysis, 2009, 30
  • [49] Continuous Functions and Riesz Type Potentials in Homogeneous Spaces
    Sjodin, Tord
    POTENTIAL ANALYSIS, 2015, 43 (03) : 495 - 511
  • [50] Generalized Bessel and Riesz Potentials on Metric Measure Spaces
    Hu, J.
    Zaehle, M.
    POTENTIAL ANALYSIS, 2009, 30 (04) : 315 - 340