Continuous Functions and Riesz Type Potentials in Homogeneous Spaces

被引:0
|
作者
Sjodin, Tord [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
关键词
Homogeneous space; Doubling measure; Kernel; Potential; Energy; Capacity; Capacitary potential; Approximate identity; Dyadic cubes;
D O I
10.1007/s11118-015-9483-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a potential theory for a Riesz type kernel in a homogeneous space and characterize the compact sets K with capacity zero as the sets K for which every continous function f on K is the restriction to K of a continuous potential of an absolutely continuous measure sigma (f) supported in an arbitrarily small neighbourhood of K. The measure sigma (f) can be choosen as a suitable restriction of a single measure sigma that only depends on the set K and the kernel k.
引用
收藏
页码:495 / 511
页数:17
相关论文
共 50 条
  • [1] Continuous Functions and Riesz Type Potentials in Homogeneous Spaces
    Tord Sjödin
    Potential Analysis, 2015, 43 : 495 - 511
  • [2] BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON SPACES OF HOMOGENEOUS TYPE
    Liu, Liguang
    Yang, Dachun
    Zhou, Yuan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (04): : 867 - 885
  • [3] Riesz Potentials in Besov and Triebel–Lizorkin Spaces over Spaces of Homogeneous Type
    Dachun Yang
    Potential Analysis, 2003, 19 : 193 - 210
  • [4] On functions arising as potentials on spaces of homogeneous type
    Gatto, AE
    Vagi, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (04) : 1149 - 1152
  • [5] Riesz potentials in Besov and Triebel-Lizorkin spaces over spaces of homogeneous type
    Yang, DC
    POTENTIAL ANALYSIS, 2003, 19 (02) : 193 - 210
  • [6] Riesz spaces of real continuous functions
    Montalvo, F.
    Pulgarin, A.
    Requejo, B.
    POSITIVITY, 2010, 14 (03) : 473 - 480
  • [7] Riesz spaces of real continuous functions
    F. Montalvo
    A. Pulgarín
    B. Requejo
    Positivity, 2010, 14 : 473 - 480
  • [8] WEIGHT SPACES OF RIESZ TYPE POTENTIALS
    NOGIN, VA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1982, (06): : 77 - 79
  • [9] RIESZ MEANS ASSOCIATED WITH HOMOGENEOUS FUNCTIONS ON HARDY SPACES
    Hong, Sunggeum
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (05): : 1867 - 1880
  • [10] Riesz* homomorphisms on pre-Riesz spaces consisting of continuous functions
    Hendrik van Imhoff
    Positivity, 2018, 22 : 425 - 447