Gaussian process emulation for second-order Monte Carlo simulations

被引:12
|
作者
Johnson, J. S. [1 ]
Gosling, J. P. [1 ]
Kennedy, M. C. [1 ]
机构
[1] Food & Environm Res Agcy, York YO41 1LZ, N Yorkshire, England
关键词
Emulation; Gaussian process; Second-order Monte Carlo; Uncertainty analysis; Variability; ESCHERICHIA-COLI O157; EXPOSURE; OUTBREAK; DESIGN;
D O I
10.1016/j.jspi.2010.11.034
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the use of emulator technology as an alternative method to second-order Monte Carlo (2DMC) in the uncertainty analysis for a percentile from the output of a stochastic model. 2DMC is a technique that uses repeated sampling in order to make inferences on the uncertainty and variability in a model output. The conventional 2DMC approach can often be highly computational, making methods for uncertainty and sensitivity analysis unfeasible. We explore the adequacy and efficiency of the emulation approach, and we find that emulation provides a viable alternative in this situation. We demonstrate these methods using two different examples of different input dimensions, including an application that considers contamination in pre-pasteurised milk. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1838 / 1848
页数:11
相关论文
共 50 条
  • [31] Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations
    Hokr, Brett H.
    Bixler, Joel N.
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    Yakovlev, Vladislav V.
    Scully, Marlan O.
    OPTICS EXPRESS, 2015, 23 (07): : 8699 - 8705
  • [32] DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS BY A MONTE-CARLO METHOD
    HASOFER, AM
    JOURNAL OF SOUND AND VIBRATION, 1987, 112 (02) : 283 - 293
  • [33] Marginalizing Gaussian Process Hyperparameters Using Sequential Monte Carlo
    Svensson, Andreas
    Dahlin, Johan
    Schon, Thomas B.
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 477 - 480
  • [34] Monte Carlo simulations of the orientational order in a strained polymer network
    Sotta, P
    Depner, M
    Deloche, B
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A & SERIYA B, 1996, 38 (01): : 84 - 93
  • [35] Monte Carlo simulations of critical dynamics with conserved order parameter
    Zheng, B
    PHYSICS LETTERS A, 2000, 277 (4-5) : 257 - 261
  • [36] Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory
    Ng, Yee -Hong
    Bettens, Ryan P. A.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (08): : 1297 - 1306
  • [37] A Second-Order Design Sensitivity-Assisted Monte Carlo Simulation Method for Reliability Evaluation of the Electromagnetic Devices
    Ren, Ziyan
    Koh, Chang-Seop
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2013, 8 (04) : 780 - 786
  • [38] Prediction of second-order rate constants of the sulfate radical anion with aromatic contaminants using the Monte Carlo technique
    Lotfi, Shahram
    Ahmadi, Shahin
    Azimi, Ali
    Kumar, Parvin
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (42) : 19504 - 19515
  • [39] Monte Carlo simulations
    Dapor, M
    ELECTRON-BEAM INTERACTIONS WITH SOLIDS: APPLICATION OF THE MONTE CARLO METHOD TO ELECTRON SCATTERING PROBLEMS, 2003, 186 : 69 - 90
  • [40] Second-order process photocurrent in conducting polymer
    Nishihara, Y
    Frankevich, EL
    Fujii, A
    Ozaki, M
    Yoshino, K
    SYNTHETIC METALS, 2003, 135 (1-3) : 319 - 320