Gaussian process emulation for second-order Monte Carlo simulations

被引:12
|
作者
Johnson, J. S. [1 ]
Gosling, J. P. [1 ]
Kennedy, M. C. [1 ]
机构
[1] Food & Environm Res Agcy, York YO41 1LZ, N Yorkshire, England
关键词
Emulation; Gaussian process; Second-order Monte Carlo; Uncertainty analysis; Variability; ESCHERICHIA-COLI O157; EXPOSURE; OUTBREAK; DESIGN;
D O I
10.1016/j.jspi.2010.11.034
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the use of emulator technology as an alternative method to second-order Monte Carlo (2DMC) in the uncertainty analysis for a percentile from the output of a stochastic model. 2DMC is a technique that uses repeated sampling in order to make inferences on the uncertainty and variability in a model output. The conventional 2DMC approach can often be highly computational, making methods for uncertainty and sensitivity analysis unfeasible. We explore the adequacy and efficiency of the emulation approach, and we find that emulation provides a viable alternative in this situation. We demonstrate these methods using two different examples of different input dimensions, including an application that considers contamination in pre-pasteurised milk. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1838 / 1848
页数:11
相关论文
共 50 条
  • [21] A quantitative risk assessment of waterborne cryptosporidiosis in France using second-order Monte Carlo simulation
    Pouillot, R
    Beaudeau, P
    Denis, JB
    Derouin, F
    RISK ANALYSIS, 2004, 24 (01) : 1 - 17
  • [22] Modeling and kinetic Monte Carlo simulations of the metallographic etching process of second-phase particles
    Sobchenko, Ihor
    Baither, Dietmar
    Reichelt, Rudolf
    Nembach, Eckhard
    PHILOSOPHICAL MAGAZINE, 2010, 90 (05) : 527 - 551
  • [23] Second-Order TDTL with Initialization Process
    Al-Qutayri, M. A.
    Al-Araji, S. R.
    Jeedella, J.
    Al-Ali, O. A. K.
    Anani, N. A.
    2012 19TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2012, : 909 - 912
  • [24] On the use of second-order derivatives and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics
    Martinelli, M.
    Duvigneau, R.
    COMPUTERS & FLUIDS, 2010, 39 (06) : 953 - 964
  • [25] Sensitivity and uncertainty analysis of nuclear reactor reactivity coefficients by Monte Carlo second-order perturbation method
    Yoo, Seung Yeol
    Shim, Hyung Jin
    ANNALS OF NUCLEAR ENERGY, 2018, 121 : 68 - 76
  • [26] Second-Order Optimization over the Multivariate Gaussian Distribution
    Malago, Luigi
    Pistone, Giovanni
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 349 - 358
  • [27] On the Second-Order Cost of TDMA for Gaussian Multiple Access
    MolavianJazi, Ebrahim
    Laneman, J. Nicholas
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 266 - 270
  • [28] Gaussian estimates for second-order operators with unbounded coefficients
    Karrmann, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) : 320 - 348
  • [30] Gaussian curvature as a null homogeneous second-order Lagrangian
    Crampin, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 351 - 361