Bayesian-Assisted Inference from Visualized Data

被引:20
|
作者
Kim, Yea-Seul [1 ]
Kayongo, Paula [2 ]
Grunde-McLaughlin, Madeleine [3 ]
Hullman, Jessica [2 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Northwestern Univ, Boston, MA USA
[3] Univ Penn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Bayesian cognition; Belief updating; Uncer ainty visualization; Adaptive visualization; EXPECTATIONS; ELICITATION; UNCERTAINTY; INFORMATION; MODEL;
D O I
10.1109/TVCG.2020.3028984
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A Bayesian view of data interpretation suggests that a visualization user should update their existing beliefs about a parameter's value in accordance with the amount of information about the parameter value captured by the new observations. Extending recent work applying Bayesian models to understand and evaluate belief updating from visualizations, we show how the predictions of Bayesian inference can be used to guide more rational belief updating. We design a Bayesian inference-assisted uncertainty analogy that numerically relates uncertainty in observed data to the user's subjective uncertainty, and a posterior visualization that prescribes how a user should update their beliefs given their prior beliefs and the observed data. In a pre-registered experiment on 4,800 people, we find that when a newly observed data sample is relatively small (N=158), both techniques reliably improve people's Bayesian updating on average compared to the current best practice of visualizing uncertainty in the observed data. For large data samples (N=5208), where people's updated beliefs tend to deviate more strongly from the prescriptions of a Bayesian model, we find evidence that the effectiveness of the two forms of Bayesian assistance may depend on people's proclivity toward trusting the source of the data. We discuss how our results provide insight into individual processes of belief updating and subjective uncertainty, and how understanding these aspects of interpretation paves the way for more sophisticated interactive visualizations for analysis and communication.
引用
收藏
页码:989 / 999
页数:11
相关论文
共 50 条
  • [31] Causal inference and Bayesian network structure learning from nominal data
    Luo, Guiming
    Zhao, Boxu
    Du, Shiyuan
    APPLIED INTELLIGENCE, 2019, 49 (01) : 253 - 264
  • [33] Bayesian Inference from Count Data Using Discrete Uniform Priors
    Comoglio, Federico
    Fracchia, Letizia
    Rinaldi, Maurizio
    PLOS ONE, 2013, 8 (10):
  • [34] Bayesian inference of chemical exposures from NHANES urine biomonitoring data
    Zachary Stanfield
    R. Woodrow Setzer
    Victoria Hull
    Risa R. Sayre
    Kristin K. Isaacs
    John F. Wambaugh
    Journal of Exposure Science & Environmental Epidemiology, 2022, 32 : 833 - 846
  • [35] Testing Bayesian inference of GRMHD model parameters from VLBI data
    Yfantis, A., I
    Zhao, S.
    Gold, R.
    Moscibrodzka, M.
    Broderick, A. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 535 (04) : 3181 - 3197
  • [36] Bayesian inference of chemical exposures from NHANES urine biomonitoring data
    Stanfield, Zachary
    Setzer, R. Woodrow
    Hull, Victoria
    Sayre, Risa R.
    Isaacs, Kristin K.
    Wambaugh, John F.
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2022, 32 (06) : 833 - 846
  • [37] Bayesian inference on stochastic gene transcription from flow cytometry data
    Tiberi, Simone
    Walsh, Mark
    Cavallaro, Massimo
    Hebenstreit, Daniel
    Finkenstadt, Barbel
    BIOINFORMATICS, 2018, 34 (17) : 647 - 655
  • [38] From Examples to Bayesian Inference
    Palmieri, Francesco A. N.
    Ciuonzo, Domenico
    Mattera, Davide
    Romano, Gianmarco
    Salvo Rossi, Pierluigi
    NEURAL NETS WIRN11, 2011, 234 : 97 - +
  • [39] Possibilistic Bayesian inference based on fuzzy data
    Arefi, Mohsen
    Taheri, S. Mahmoud
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (05) : 753 - 763
  • [40] Application of Bayesian inference to fMRI data analysis
    Kershaw, J
    Ardekani, BA
    Kanno, I
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (12) : 1138 - 1153