GFPLAIN250m, a global high-resolution dataset of Earth's floodplains

被引:103
|
作者
Nardi, F. [1 ]
Annis, A. [1 ]
Di Baldassarre, G. [2 ,3 ,4 ]
Vivoni, E. R. [5 ,6 ]
Grimaldi, S. [7 ,8 ]
机构
[1] Univ Foreigners Perugia, Water Resources Res & Documentat Ctr WARREDOC, Perugia, Italy
[2] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden
[3] CNDS, Ctr Nat Hazards & Disaster Sci, Uppsala, Sweden
[4] IHE Delft Inst Water Educ, Delft, Netherlands
[5] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[6] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA
[7] Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst DIBAF, Viterbo, Italy
[8] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, New York, NY USA
基金
欧洲研究理事会;
关键词
FLOOD RISK; EXTRACTION; DEM; DELINEATION; ALGORITHM; CLIMATE;
D O I
10.1038/sdata.2018.309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying floodplain boundaries is of paramount importance for earth, environmental and socioeconomic studies addressing riverine risk and resource management. However, to date, a global floodplain delineation using a homogeneous procedure has not been constructed. In this paper, we present the first, comprehensive, high-resolution, gridded dataset of Earth's floodplains at 250-m resolution (GFPLAIN250m). We use the Shuttle Radar Topography Mission (SRTM) digital terrain model and set of terrain analysis procedures for geomorphic floodplain delineations. The elevation data are processed by a fast geospatial tool for floodplain mapping available for download at https://github.com/fnardi/GFPLAIN. The GFPLAIN250m dataset can support many applications, including flood hazard mapping, habitat restoration, development studies, and the analysis of human-flood interactions. To test the GFPLAIN250m dataset, we perform a consistency analysis with floodplain delineations derived by flood hazard modelling studies in Europe.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Data Descriptor: MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modelling
    Vega, Greta C.
    Pertierra, Luis R.
    Angel Olalla-Tarraga, Miguel
    SCIENTIFIC DATA, 2017, 4
  • [42] TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015
    John T. Abatzoglou
    Solomon Z. Dobrowski
    Sean A. Parks
    Katherine C. Hegewisch
    Scientific Data, 5
  • [43] A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry
    Li, Yao
    Gao, Huilin
    Zhao, Gang
    Tseng, Kuo-Hsin
    REMOTE SENSING OF ENVIRONMENT, 2020, 244 (244)
  • [44] A High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections
    Muis, Sanne
    Apecechea, Maialen Irazoqui
    Dullaart, Job
    Rego, Joao de Lima
    Madsen, Kristine Skovgaard
    Su, Jian
    Yan, Kun
    Verlaan, Martin
    FRONTIERS IN MARINE SCIENCE, 2020, 7
  • [45] CHINA'S HIGH-RESOLUTION EARTH OBSERVATION SYSTEM (CHEOS): ADVANCES AND PERSPECTIVES
    Li, D. R.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 583 - 590
  • [46] HIGH-RESOLUTION SPECTROSCOPY - HOLLAS,M
    FOSTER, SC
    AMERICAN SCIENTIST, 1983, 71 (06) : 647 - 647
  • [47] To a Question on Possibilities of High-Resolution NMR Spectroscopy in the Earth’s Magnetic Field
    P. A. Kupriyanov
    V. D. Kirilenko
    A. V. Chizhik
    V. I. Chizhik
    Applied Magnetic Resonance, 2021, 52 : 1757 - 1765
  • [48] Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive
    Potere, David
    SENSORS, 2008, 8 (12) : 7973 - 7981
  • [49] To a Question on Possibilities of High-Resolution NMR Spectroscopy in the Earth's Magnetic Field
    Kupriyanov, P. A.
    Kirilenko, V. D.
    Chizhik, A. V.
    Chizhik, V. I.
    APPLIED MAGNETIC RESONANCE, 2021, 52 (12) : 1757 - 1765
  • [50] Commercial operation of China's high-resolution earth observation system is imperative
    Li, Deren
    Shen, Xin
    Ma, Hongchao
    Zhang, Guo
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2014, 39 (04): : 386 - 389