GFPLAIN250m, a global high-resolution dataset of Earth's floodplains

被引:103
|
作者
Nardi, F. [1 ]
Annis, A. [1 ]
Di Baldassarre, G. [2 ,3 ,4 ]
Vivoni, E. R. [5 ,6 ]
Grimaldi, S. [7 ,8 ]
机构
[1] Univ Foreigners Perugia, Water Resources Res & Documentat Ctr WARREDOC, Perugia, Italy
[2] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden
[3] CNDS, Ctr Nat Hazards & Disaster Sci, Uppsala, Sweden
[4] IHE Delft Inst Water Educ, Delft, Netherlands
[5] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[6] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA
[7] Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst DIBAF, Viterbo, Italy
[8] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, New York, NY USA
基金
欧洲研究理事会;
关键词
FLOOD RISK; EXTRACTION; DEM; DELINEATION; ALGORITHM; CLIMATE;
D O I
10.1038/sdata.2018.309
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifying floodplain boundaries is of paramount importance for earth, environmental and socioeconomic studies addressing riverine risk and resource management. However, to date, a global floodplain delineation using a homogeneous procedure has not been constructed. In this paper, we present the first, comprehensive, high-resolution, gridded dataset of Earth's floodplains at 250-m resolution (GFPLAIN250m). We use the Shuttle Radar Topography Mission (SRTM) digital terrain model and set of terrain analysis procedures for geomorphic floodplain delineations. The elevation data are processed by a fast geospatial tool for floodplain mapping available for download at https://github.com/fnardi/GFPLAIN. The GFPLAIN250m dataset can support many applications, including flood hazard mapping, habitat restoration, development studies, and the analysis of human-flood interactions. To test the GFPLAIN250m dataset, we perform a consistency analysis with floodplain delineations derived by flood hazard modelling studies in Europe.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A high-resolution dataset on the plastic material flows in Switzerland
    Klotz, Magdalena
    Haupt, Melanie
    DATA IN BRIEF, 2022, 41
  • [32] A Multimodal Geo Dataset for High-resolution Precipitation Forecasting
    Jiang, Chen
    Wang, Wenlu
    Pan, Naiqing
    Ku, Wei-Shinn
    31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023, 2023, : 572 - 575
  • [33] DET: A High-resolution DVS Dataset for Lane Extraction
    Cheng, Wensheng
    Luo, Hao
    Yang, Wen
    Yu, Lei
    Chen, Shoushun
    Li, Wei
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1666 - 1675
  • [34] Wuhan Dataset: A High-Resolution Dataset of Spatiotemporal Fusion for Remote Sensing Images
    Zhang, Xingjian
    Xie, Linglin
    Li, Shuang
    Lei, Fan
    Cao, Li
    Li, Xinghua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [35] High-resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains
    Sofia, Giulia
    Dalla Fontana, Giancarlo
    Tarolli, Paolo
    HYDROLOGICAL PROCESSES, 2014, 28 (04) : 2046 - 2061
  • [36] HIGH-RESOLUTION ALKALINE-EARTH NMR
    BOUHOUTSOSBROWN, E
    ROSE, DM
    BRYANT, RG
    JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1981, 43 (10): : 2247 - 2448
  • [37] Whole Earth high-resolution earthquake forecasts
    Kagan, Yan Y.
    Jackson, David D.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (01) : 677 - 686
  • [38] A high-resolution canopy height model of the Earth
    Lang, Nico
    Jetz, Walter
    Schindler, Konrad
    Wegner, Jan Dirk
    NATURE ECOLOGY & EVOLUTION, 2023, 7 (11) : 1778 - 1789
  • [39] A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic-spectral classification algorithm
    Feng, Min
    Sexton, Joseph O.
    Channan, Saurabh
    Townshend, John R.
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016, 9 (02) : 113 - 133
  • [40] Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling
    Sheffield, Justin
    Goteti, Gopi
    Wood, Eric F.
    JOURNAL OF CLIMATE, 2006, 19 (13) : 3088 - 3111