Atomic-layer deposition of crystalline BeO on SiC

被引:16
|
作者
Lee, Seung Min [1 ,2 ]
Jang, Yoonseo [1 ,2 ]
Jung, Jongho [1 ,2 ]
Yum, Jung Hwan [3 ]
Larsen, Eric S. [3 ,4 ]
Bielawski, Christopher W. [3 ,4 ]
Wang, Weijie [5 ,6 ]
Ryou, Jae-Hyun [5 ,6 ]
Kim, Hyun-Seop [7 ]
Cha, Ho-Young [7 ]
Oh, Jungwoo [1 ,2 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, Incheon 21983, South Korea
[2] Yonsei Inst Convergence Technol, Incheon 21983, South Korea
[3] IBS, CMCM, Ulsan 44919, South Korea
[4] UNIST, Dept Chem, Ulsan 44919, South Korea
[5] Univ Houston, Dept Mech Engn, Mat Sci & Engn Program, Houston, TX 77204 USA
[6] Univ Houston, Texas Ctr Superconduct UH TcSUH, Houston, TX 77204 USA
[7] Hongik Univ, Sch Elect & Elect Engn, Seoul 04066, South Korea
基金
新加坡国家研究基金会;
关键词
Beryllium oxide; Silicon carbide; Atomic layer deposition; Domain matching epitaxy; Interface trap density; THERMAL-CONDUCTIVITY; BERYLLIUM-OXIDE; DIELECTRICS; EPITAXY;
D O I
10.1016/j.apsusc.2018.09.239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, an epitaxial beryllium oxide (BeO) film was grown on 4H silicon carbide (4H-SiC) by atomic layer deposition (ALD) at a low temperature of 250 degrees C. The BeO film had a large lattice mismatch with the substrate (> 7-8%), but it was successfully grown to a single crystal by domain-matching epitaxy (DME). The bandgap energy, dielectric constant, and thermal conductivity properties of crystalline BeO are suitable for power transistors that require low leakage currents and fast heat dissipation in high electric fields. Physical characterization confirmed the single-crystalline BeO (0 0 2). Raman analysis showed that the E-1 and A(1) phonon modes of ALD BeO were intermixed with the E-2 and A(1) phonon modes of SiC, resulting in a significant increase in phonon intensity. After heat treatment at a high temperature, a small amount of SiO2 interfacial oxide was formed but the stoichiometry of BeO was maintained. From the capacitance-voltage (C-V) curves, we obtained a dielectric constant of 6.9 and calculated a low interface trap density of 6 x 10(10) cm(-2).eV(-1) using the Terman method at E-c-E-t = 0.6 eV. The high bandgap, thermal conductivity, and excellent crystallinity reduced the dangling bonds at the interface of BeO-on-SiC.
引用
收藏
页码:634 / 640
页数:7
相关论文
共 50 条
  • [41] Atomic-layer selective deposition of silicon nitride on hydrogen-terminated Si surfaces
    Yokoyama, S
    Ikeda, N
    Kajikawa, K
    Nakashima, Y
    APPLIED SURFACE SCIENCE, 1998, 130 : 352 - 356
  • [42] Low temperature epitaxial growth of GaP on Si by atomic-layer deposition with plasma activation
    Uvarov, A., V
    Gudovskikh, A. S.
    Nevedomskiy, V. N.
    Baranov, A., I
    Kudryashov, D. A.
    Morozov, I. A.
    Kleider, J-P
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (34)
  • [43] Passivation and Electrical Properties of Alumina Layers Deposited by Atomic-Layer Deposition with Different Precursors
    Kolkovsky, Vladimir
    Lange, Nicolas
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (17):
  • [44] Metal-organic atomic-layer deposition of titanium-silicon-nitride films
    Min, JS
    Park, HS
    Kang, SW
    APPLIED PHYSICS LETTERS, 1999, 75 (11) : 1521 - 1523
  • [45] ATOMIC-LAYER TITRATION OF SURFACE-REACTIONS
    TROMP, RM
    MICHELY, T
    NATURE, 1995, 373 (6514) : 499 - 501
  • [46] Growth of crystalline LaAlO3 by atomic layer deposition
    Ngo, Thong Q.
    McDaniel, Martin D.
    Posadas, Agham
    Demkov, Alexander A.
    Ekerdt, John G.
    OXIDE-BASED MATERIALS AND DEVICES V, 2014, 8987
  • [47] Crystalline growth of AlN thin films by atomic layer deposition
    Sadeghpour, S.
    Ceyssens, F.
    Puers, R.
    27TH MICROMECHANICS AND MICROSYSTEMS EUROPE WORKSHOP (MME 2016), 2016, 757
  • [48] Atomic-layer epitaxy of silicon on (100) surface
    Satoh, Yasuo
    Ikeda, Keiji
    Sugahara, Satoshi
    Matsumura, Masakiyo
    1600, JJAP, Tokyo (39):
  • [49] SOI wafer fabrication by atomic-layer cleaving
    Current, MI
    Malik, IJ
    Bedell, SW
    Farrens, SN
    Kirk, H
    Korolik, M
    Kang, S
    Fuerfanger, M
    Henley, FJ
    HIGH PURITY SILICON VI, 2000, 4218 : 516 - 523
  • [50] Surface engineering using self-assembled monolayers: Model substrates for atomic-layer deposition
    Whelan, CM
    Demas, AC
    Negreira, AR
    Landaluce, TF
    Schuhmacher, J
    Carbonell, L
    Maex, K
    MATERIALS FOR INFORMATION TECHNOLOGY: DEVICES, INTERCONNECTS AND PACKAGING, 2005, : 69 - 76