Atomic-layer deposition of crystalline BeO on SiC

被引:16
|
作者
Lee, Seung Min [1 ,2 ]
Jang, Yoonseo [1 ,2 ]
Jung, Jongho [1 ,2 ]
Yum, Jung Hwan [3 ]
Larsen, Eric S. [3 ,4 ]
Bielawski, Christopher W. [3 ,4 ]
Wang, Weijie [5 ,6 ]
Ryou, Jae-Hyun [5 ,6 ]
Kim, Hyun-Seop [7 ]
Cha, Ho-Young [7 ]
Oh, Jungwoo [1 ,2 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, Incheon 21983, South Korea
[2] Yonsei Inst Convergence Technol, Incheon 21983, South Korea
[3] IBS, CMCM, Ulsan 44919, South Korea
[4] UNIST, Dept Chem, Ulsan 44919, South Korea
[5] Univ Houston, Dept Mech Engn, Mat Sci & Engn Program, Houston, TX 77204 USA
[6] Univ Houston, Texas Ctr Superconduct UH TcSUH, Houston, TX 77204 USA
[7] Hongik Univ, Sch Elect & Elect Engn, Seoul 04066, South Korea
基金
新加坡国家研究基金会;
关键词
Beryllium oxide; Silicon carbide; Atomic layer deposition; Domain matching epitaxy; Interface trap density; THERMAL-CONDUCTIVITY; BERYLLIUM-OXIDE; DIELECTRICS; EPITAXY;
D O I
10.1016/j.apsusc.2018.09.239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, an epitaxial beryllium oxide (BeO) film was grown on 4H silicon carbide (4H-SiC) by atomic layer deposition (ALD) at a low temperature of 250 degrees C. The BeO film had a large lattice mismatch with the substrate (> 7-8%), but it was successfully grown to a single crystal by domain-matching epitaxy (DME). The bandgap energy, dielectric constant, and thermal conductivity properties of crystalline BeO are suitable for power transistors that require low leakage currents and fast heat dissipation in high electric fields. Physical characterization confirmed the single-crystalline BeO (0 0 2). Raman analysis showed that the E-1 and A(1) phonon modes of ALD BeO were intermixed with the E-2 and A(1) phonon modes of SiC, resulting in a significant increase in phonon intensity. After heat treatment at a high temperature, a small amount of SiO2 interfacial oxide was formed but the stoichiometry of BeO was maintained. From the capacitance-voltage (C-V) curves, we obtained a dielectric constant of 6.9 and calculated a low interface trap density of 6 x 10(10) cm(-2).eV(-1) using the Terman method at E-c-E-t = 0.6 eV. The high bandgap, thermal conductivity, and excellent crystallinity reduced the dangling bonds at the interface of BeO-on-SiC.
引用
收藏
页码:634 / 640
页数:7
相关论文
共 50 条
  • [31] Atomic-Layer Engineering of Oxide Superconductors
    Bollinger, A. T.
    Eckstein, J. N.
    Dubuis, G.
    Pavuna, D.
    Bozovic, I.
    OXIDE-BASED MATERIALS AND DEVICES III, 2012, 8263
  • [32] ATOMIC-LAYER ENGINEERING OF CUPRATE SUPERCONDUCTORS
    BOZOVIC, I
    ECKSTEIN, JN
    VIRSHUP, GF
    CHAIKEN, A
    WALL, M
    HOWELL, R
    FLUSS, M
    JOURNAL OF SUPERCONDUCTIVITY, 1994, 7 (01): : 187 - 195
  • [33] Mercury cadmium telluride surface passivation by the thin alumina film atomic-layer deposition
    Kovchavtsev, A. P.
    Sidorov, G. Yu.
    Nastovjak, A. E.
    Tsarenko, A. V.
    Sabinina, I. V.
    Vasilyev, V. V.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (12)
  • [34] Tunable plasmonic response of metallic nanoantennna heterodimer arrays modified by atomic-layer deposition
    Wambold, Raymond A.
    Borst, Benjamin D.
    Qi, Jie
    Weisel, Gary J.
    Willis, Brian G.
    Zimmerman, Darin T.
    JOURNAL OF NANOPHOTONICS, 2016, 10 (02)
  • [35] Low-temperature formation of silicon nitride gate dielectrics by atomic-layer deposition
    Nakajima, A
    Yoshimoto, T
    Kidera, T
    Yokoyama, S
    APPLIED PHYSICS LETTERS, 2001, 79 (05) : 665 - 667
  • [36] Plasma-enhanced atomic-layer deposition of a HfO2 gate dielectric
    Choi, S
    Koo, J
    Jeon, H
    Kim, Y
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 44 (01) : 35 - 38
  • [37] Nanostructured Platinum Catalysts by Atomic-Layer Deposition for Solid-Oxide Fuel Cells
    Chao, Cheng-Chieh
    Motoyama, Munekazu
    Prinz, Fritz B.
    ADVANCED ENERGY MATERIALS, 2012, 2 (06) : 651 - 654
  • [38] Atomic-Layer Electroless Deposition: A Scalable Approach to Surface-Modified Metal Powders
    Cappillino, Patrick J.
    Sugar, Joshua D.
    El Gabaly, Farid
    Cai, Trevor Y.
    Liu, Zhi
    Stickney, John L.
    Robinson, David B.
    LANGMUIR, 2014, 30 (16) : 4820 - 4829
  • [39] Mercury cadmium telluride surface passivation by the thin alumina film atomic-layer deposition
    Kovchavtsev, A.P. (kap@isp.nsc.ru), 1600, American Institute of Physics Inc. (121):
  • [40] Adsorption calorimetry during atomic-layer deposition (ALD) and when growing model catalysts
    Campbell, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255