Generalized potentials in variable exponent Lebesgue spaces on homogeneous spaces

被引:12
|
作者
Hajibayov, Mubariz G. [2 ]
Samko, Stefan [1 ]
机构
[1] Univ Algarve, Faro, Portugal
[2] Azerbaijan Acad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
Generalized potential; variable exponent; variable Lebesgue space; quasimetric measure space; space of homogeneous type; Musielak-Orlicz space; Matuszewska-Orlicz indices; MAXIMAL-FUNCTION; FRACTIONAL INTEGRALS; SOBOLEV EMBEDDINGS; OPERATORS; BOUNDEDNESS; CONVOLUTION;
D O I
10.1002/mana.200710204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider generalized potential operators with the kernel a([rho(x,y)])/[rho(x,y)](N) on bounded quasimetrie measure space (X, mu, d) with doubling measure mu satisfying the upper growth condition mu B(x, r) <= Kr-N, N is an element of (0, infinity). Under some natural assumptions on a(r) in terms of almost monotonicity we prove that such potential operators are bounded from the variable exponent Lebesgue space L-p(.) (X, mu) into a certain Musielak-Orlicz space L-Phi (X, mu) with the N-function Phi(x, r) defined by the exponent p(x) and the function a(r). A reformulation of the obtained result in terms of the Matuszewska-Orlicz indices of the function a(r) is also given. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条
  • [41] Iterated maximal functions in variable exponent Lebesgue spaces
    Petteri Harjulehto
    Peter Hästö
    Yoshihiro Mizuta
    Tetsu Shimomura
    Manuscripta Mathematica, 2011, 135 : 381 - 399
  • [42] On Some Properties of Convolutions in Variable Exponent Lebesgue Spaces
    Daniyal M. Israfilov
    Elife Yirtici
    Complex Analysis and Operator Theory, 2017, 11 : 1817 - 1824
  • [43] COMMUTATORS FOR THE MAXIMAL FUNCTIONS ON LEBESGUE SPACES WITH VARIABLE EXPONENT
    Zhang, Pu
    Wu, Jianglong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1375 - 1386
  • [44] Weighted Sobolev theorem in Lebesgue spaces with variable exponent
    Samko, N. G.
    Samko, S. G.
    Vakulov, B. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) : 560 - 583
  • [45] On variable exponent Lebesgue spaces of entire analytic functions
    Motos, Joaquin
    Jesus Planells, Maria
    Talavera, Cesar F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 775 - 787
  • [46] VOLTERRA INTEGRAL EQUATIONS ON VARIABLE EXPONENT LEBESGUE SPACES
    Castillo, R. E.
    Ramos-Fernandez, J. C.
    Rojas, E. M.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2016, 28 (01) : 1 - 29
  • [47] MAXIMAL OPERATOR IN VARIABLE EXPONENT LEBESGUE SPACES ON UNBOUNDED QUASIMETRIC MEASURE SPACES
    Adamowicz, Tomasz
    Harjulehto, Petteri
    Hasto, Peter
    MATHEMATICA SCANDINAVICA, 2015, 116 (01) : 5 - 22
  • [48] Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces
    Hernandez, Francisco L.
    Ruiz, Cesar
    Sanchiz, Mauro
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [49] Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces
    Francisco L. Hernández
    César Ruiz
    Mauro Sanchiz
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [50] Linear methods of approximation in weighted Lebesgue spaces with variable exponent
    Testici, Ahmet
    Israfilov, Daniyal M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (03): : 744 - 753