Generalized potentials in variable exponent Lebesgue spaces on homogeneous spaces

被引:12
|
作者
Hajibayov, Mubariz G. [2 ]
Samko, Stefan [1 ]
机构
[1] Univ Algarve, Faro, Portugal
[2] Azerbaijan Acad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
Generalized potential; variable exponent; variable Lebesgue space; quasimetric measure space; space of homogeneous type; Musielak-Orlicz space; Matuszewska-Orlicz indices; MAXIMAL-FUNCTION; FRACTIONAL INTEGRALS; SOBOLEV EMBEDDINGS; OPERATORS; BOUNDEDNESS; CONVOLUTION;
D O I
10.1002/mana.200710204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider generalized potential operators with the kernel a([rho(x,y)])/[rho(x,y)](N) on bounded quasimetrie measure space (X, mu, d) with doubling measure mu satisfying the upper growth condition mu B(x, r) <= Kr-N, N is an element of (0, infinity). Under some natural assumptions on a(r) in terms of almost monotonicity we prove that such potential operators are bounded from the variable exponent Lebesgue space L-p(.) (X, mu) into a certain Musielak-Orlicz space L-Phi (X, mu) with the N-function Phi(x, r) defined by the exponent p(x) and the function a(r). A reformulation of the obtained result in terms of the Matuszewska-Orlicz indices of the function a(r) is also given. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条
  • [21] Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces
    A. Almeida
    P. Harjulehto
    P. Hästö
    T. Lukkari
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 405 - 424
  • [22] Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces
    Almeida, A.
    Harjulehto, P.
    Hasto, P.
    Lukkari, T.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) : 405 - 424
  • [23] On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent
    Kokilashvili, V
    Samko, S
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (04): : 899 - 910
  • [24] Sobolev-type inequalities for potentials in grand variable exponent Lebesgue spaces
    Edmunds, David E.
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) : 2174 - 2188
  • [25] Embedding between variable exponent Lebesgue spaces with measures
    Bandaliev, R. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2012, 2 (01): : 119 - 126
  • [26] Weighted composition operators on variable exponent Lebesgue spaces
    Datt, Gopal
    Bajaj, Daljeet Singh
    Fiorenza, Alberto
    ADVANCES IN OPERATOR THEORY, 2024, 9 (03)
  • [27] Precompact Sets in Bochner–Lebesgue Spaces with Variable Exponent
    J. Xu
    Mathematical Notes, 2021, 110 : 932 - 941
  • [28] Relative rearrangement and Lebesgue spaces LP(•) with variable exponent
    Fiorenza, A.
    Rakotoson, J. M.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (06): : 506 - 521
  • [29] Rough Hausdorff operators on Lebesgue spaces with variable exponent
    Ziwei Li
    Jiman Zhao
    Annals of Functional Analysis, 2023, 14
  • [30] Maximal operator on variable Lebesgue spaces with radial exponent
    Nekvinda, Ales
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 961 - 986