Melting and Recrystallization of Copper Nanoparticles Prepared by Microwave-Assisted Reduction in the Presence of Triethylenetetramine

被引:6
|
作者
Jheng, Li-Cheng [1 ]
Wang, Yen-Zen [2 ]
Huang, Wen-Yao [3 ]
Ho, Ko-Shan [1 ]
Tsai, Cheng-Hsien [1 ]
Huang, Ching-Tang [4 ]
Tsai, Huang-Shian [4 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Chem & Mat Engn, 415 Chien Kuo Rd, Kaohsiung 80782, Taiwan
[2] Natl Yun Lin Univ Sci & Technol, Dept Chem & Mat Engn, Yunlin 64002, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Photon, 70 Lienhai Rd, Kaohsiung 80424, Taiwan
[4] Taiwan Text Res Inst, 20 Kejia Rd, Douliou City 64057, Yunlin, Taiwan
关键词
microwave-assisted; nanocopper; triethylene tetramine; melting; recrystallization; chelation; OPTICAL-PROPERTIES; COHESIVE ENERGY; CLUSTERS; SIZE; CU; POINT;
D O I
10.3390/ma13071507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The small sized copper nanoparticles (Cu-NPs), prepared in the presence of triethylene tetramine (TETA) and assisted with microwave irradiation, have an extremely low melting temperature. Melting of the small sizezd Cu-NPs can be triggered by the heat generated from the e-beam irradiation during SEM and TEM image construction. The dispersed Cu atoms around the agglomerated big Cu particles can undergo recrystallization immediately due to the strong driving force of the huge temperature difference to normal melting temperature (T-m = 1085 degrees C). Some of the Cu-NPs with bigger sizes also recrystallize and agglomerate into dense, big particles. According to X-ray diffraction patterns, these particles can agglomerate into compact, ordered Cu crystals in less than five minutes at 60 degrees C. The melting and recrystallization related endothermic and exothermic phase transitions of Cu-NPs can be found from differential scanning calorimeter (DSC) thermograms and optical microscopic pictures.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Microwave-assisted conversion of oximes into nitriles in the presence of a zeolite
    Hegedüs, A
    Cwik, A
    Hell, Z
    Horváth, Z
    Esek, A
    Uzsoki, M
    GREEN CHEMISTRY, 2002, 4 (06) : 618 - 620
  • [42] Microwave-assisted reduction of levulinic acid with alcohols producing γ-valerolactone in the presence of a Ru/C catalyst
    A-Shaal, Mohammad Ghith
    Calin, Marc
    Delidovich, Irina
    Palkovits, Regina
    CATALYSIS COMMUNICATIONS, 2016, 75 : 65 - 68
  • [43] Tracking method for the microwave-assisted synthesis of silver nanoparticles
    Patrascu, M.
    Calinescu, I.
    Boscornea, C.
    Lacatusu, I.
    Martin, D.
    Ighigeanu, D.
    Vasile, E.
    Radoiu, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2011, 13 (5-6): : 666 - 671
  • [44] Microwave-assisted coating of PMMA beads by silver nanoparticles
    Irzh, Alexander
    Perkas, Nina
    Gedanken, Aharon
    LANGMUIR, 2007, 23 (19) : 9891 - 9897
  • [45] Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method
    Zhu Shao-Peng
    Tang Shao-Chun
    Meng Xiang-Kang
    CHINESE PHYSICS LETTERS, 2009, 26 (07)
  • [46] Microwave-assisted polyol process for synthesis of ni nanoparticles
    Li, DS
    Komarneni, S
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (05) : 1510 - 1517
  • [47] Fast Microwave-Assisted Synthesis of Uniform Magnetic Nanoparticles
    Kozakova, Z.
    Bazant, P.
    Machovsky, M.
    Babayan, V.
    Kuritka, I.
    ACTA PHYSICA POLONICA A, 2010, 118 (05) : 948 - 949
  • [48] Effect of Ce dopant on photocatalytic properties of CaMoO4 nanoparticles prepared by microwave-assisted method
    Phuruangrat A.
    Thongtem S.
    Thongtem T.
    Materials Research Innovations, 2022, 26 (02) : 84 - 90
  • [49] Microwave-assisted synthesis and characterization of tin oxide nanoparticles
    Krishnakumar, T.
    Pinna, Nicola
    Kumari, K. Prasanna
    Perumal, K.
    Jayaprakash, R.
    MATERIALS LETTERS, 2008, 62 (19) : 3437 - 3440
  • [50] Preparation of Ag core-Cu shell nanoparticles by microwave-assisted alcohol reduction process
    Nakamura, Takashi
    Tsukahara, Yasunori
    Yamauchi, Tomohisa
    Sakata, Takao
    Mori, Hirotaro
    Wada, Yuji
    CHEMISTRY LETTERS, 2007, 36 (01) : 154 - 155