Melting and Recrystallization of Copper Nanoparticles Prepared by Microwave-Assisted Reduction in the Presence of Triethylenetetramine

被引:6
|
作者
Jheng, Li-Cheng [1 ]
Wang, Yen-Zen [2 ]
Huang, Wen-Yao [3 ]
Ho, Ko-Shan [1 ]
Tsai, Cheng-Hsien [1 ]
Huang, Ching-Tang [4 ]
Tsai, Huang-Shian [4 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Chem & Mat Engn, 415 Chien Kuo Rd, Kaohsiung 80782, Taiwan
[2] Natl Yun Lin Univ Sci & Technol, Dept Chem & Mat Engn, Yunlin 64002, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Photon, 70 Lienhai Rd, Kaohsiung 80424, Taiwan
[4] Taiwan Text Res Inst, 20 Kejia Rd, Douliou City 64057, Yunlin, Taiwan
关键词
microwave-assisted; nanocopper; triethylene tetramine; melting; recrystallization; chelation; OPTICAL-PROPERTIES; COHESIVE ENERGY; CLUSTERS; SIZE; CU; POINT;
D O I
10.3390/ma13071507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The small sized copper nanoparticles (Cu-NPs), prepared in the presence of triethylene tetramine (TETA) and assisted with microwave irradiation, have an extremely low melting temperature. Melting of the small sizezd Cu-NPs can be triggered by the heat generated from the e-beam irradiation during SEM and TEM image construction. The dispersed Cu atoms around the agglomerated big Cu particles can undergo recrystallization immediately due to the strong driving force of the huge temperature difference to normal melting temperature (T-m = 1085 degrees C). Some of the Cu-NPs with bigger sizes also recrystallize and agglomerate into dense, big particles. According to X-ray diffraction patterns, these particles can agglomerate into compact, ordered Cu crystals in less than five minutes at 60 degrees C. The melting and recrystallization related endothermic and exothermic phase transitions of Cu-NPs can be found from differential scanning calorimeter (DSC) thermograms and optical microscopic pictures.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Microwave-assisted exfoliation and tearing of graphene oxide in the presence of TiO2 nanoparticles
    Rasuli, Hadi
    Rasuli, Reza
    Alizadeh, Mandi
    BoonTong, Goh
    RESULTS IN PHYSICS, 2020, 18
  • [22] Microwave-assisted chemical synthesis of copper nanotadpoles
    Hu, Hanmei
    Deng, Chonghai
    Yao, Lijuan
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 138 (2-3) : 886 - 892
  • [23] Microwave-assisted polyol synthesis of Cu nanoparticles
    Blosi, M.
    Albonetti, S.
    Dondi, M.
    Martelli, C.
    Baldi, G.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (01) : 127 - 138
  • [24] Microwave-assisted polyol synthesis of Cu nanoparticles
    M. Blosi
    S. Albonetti
    M. Dondi
    C. Martelli
    G. Baldi
    Journal of Nanoparticle Research, 2011, 13 : 127 - 138
  • [25] Preparation of CdS nanoparticles by microwave-assisted synthesis
    Tamasauskaite-Tamasiunaite, L.
    Grinciene, G.
    Simkunaite-Stanyniene, B.
    Naruskevicius, L.
    Pakstas, V.
    Selskis, A.
    Norkus, E.
    CHEMIJA, 2015, 26 (03): : 193 - 197
  • [26] MICROWAVE-ASSISTED SYNTHESIS AND CHARACTERIZATION OF CaS NANOPARTICLES
    Roy, Arup
    Bhattacharya, Jayanta
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2012, 11 (05)
  • [27] Microwave-Assisted Combustion Synthesis of ZnO Nanoparticles
    Kooti, M.
    Sedeh, A. Naghdi
    JOURNAL OF CHEMISTRY, 2013, 2013
  • [28] Microwave-assisted synthesis of zinc oxide nanoparticles
    Hasanpoor, M.
    Aliofkhazraei, M.
    Delavari, H.
    5TH INTERNATIONAL BIENNIAL CONFERENCE ON ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS, UFGNSM15, 2015, 11 : 320 - 325
  • [29] Thermal analysis and EPR study of copper species in mordenites prepared by conventional and microwave-assisted methods
    Marina Shelyapina
    Irina Zvereva
    Liliya Yafarova
    Dmitrii Bogdanov
    Stanislav Sukharzhevskii
    Yurii Zhukov
    Vitalii Petranovskii
    Journal of Thermal Analysis and Calorimetry, 2018, 134 : 71 - 79
  • [30] Thermal analysis and EPR study of copper species in mordenites prepared by conventional and microwave-assisted methods
    Shelyapina, Marina
    Zvereva, Irina
    Yafarova, Liliya
    Bogdanov, Dmitrii
    Sukharzhevskii, Stanislav
    Zhukov, Yurii
    Petranovskii, Vitalii
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 134 (01) : 71 - 79