Melting and Recrystallization of Copper Nanoparticles Prepared by Microwave-Assisted Reduction in the Presence of Triethylenetetramine

被引:6
|
作者
Jheng, Li-Cheng [1 ]
Wang, Yen-Zen [2 ]
Huang, Wen-Yao [3 ]
Ho, Ko-Shan [1 ]
Tsai, Cheng-Hsien [1 ]
Huang, Ching-Tang [4 ]
Tsai, Huang-Shian [4 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Chem & Mat Engn, 415 Chien Kuo Rd, Kaohsiung 80782, Taiwan
[2] Natl Yun Lin Univ Sci & Technol, Dept Chem & Mat Engn, Yunlin 64002, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Photon, 70 Lienhai Rd, Kaohsiung 80424, Taiwan
[4] Taiwan Text Res Inst, 20 Kejia Rd, Douliou City 64057, Yunlin, Taiwan
关键词
microwave-assisted; nanocopper; triethylene tetramine; melting; recrystallization; chelation; OPTICAL-PROPERTIES; COHESIVE ENERGY; CLUSTERS; SIZE; CU; POINT;
D O I
10.3390/ma13071507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The small sized copper nanoparticles (Cu-NPs), prepared in the presence of triethylene tetramine (TETA) and assisted with microwave irradiation, have an extremely low melting temperature. Melting of the small sizezd Cu-NPs can be triggered by the heat generated from the e-beam irradiation during SEM and TEM image construction. The dispersed Cu atoms around the agglomerated big Cu particles can undergo recrystallization immediately due to the strong driving force of the huge temperature difference to normal melting temperature (T-m = 1085 degrees C). Some of the Cu-NPs with bigger sizes also recrystallize and agglomerate into dense, big particles. According to X-ray diffraction patterns, these particles can agglomerate into compact, ordered Cu crystals in less than five minutes at 60 degrees C. The melting and recrystallization related endothermic and exothermic phase transitions of Cu-NPs can be found from differential scanning calorimeter (DSC) thermograms and optical microscopic pictures.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Microwave-Assisted synthesis of Anisotropic copper-silver nanoparticles
    Njoki, Peter N.
    Rhoades, Anais E.
    Barnes, Joy, I
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 241
  • [2] Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction
    Nakamura, Takashi
    Tsukahara, Yasunori
    Sakata, Takao
    Mori, Hirotaro
    Kanbe, Yumi
    Bessho, Hisami
    Wada, Yuji
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2007, 80 (01) : 224 - 232
  • [3] Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction
    Nakamura, Takashi
    Tsukahara, Yasunori
    Sakata, Takao
    Mori, Hirotaro
    Kanbe, Yumi
    Bessho, Hisami
    Wada, Yuji
    Bulletin of the Chemical Society of Japan, 2007, 80 (01): : 224 - 232
  • [4] CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst
    Nekooi, Parisa
    Akbari, Marzieh
    Amini, Mohammad K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (12) : 6392 - 6398
  • [5] One-Pot Ultrafast Microwave-Assisted Synthesis of Copper and Copper Oxide Nanoparticles
    Veiga, Lionel
    Garate, Octavio
    Lloret, Paulina
    Moina, Carlos
    Ybarra, Gabriel
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (06)
  • [6] Microwave-assisted synthesis of silver nanoparticles in paper via glucose reduction
    Dankovich, Theresa
    Gray, Derek G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [8] Microwave-assisted tunnelling in the presence of dissipation
    Papadopoulos, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (15): : 5497 - 5510
  • [9] Microwave-assisted synthesis of ceria nanoparticles
    Yang, HM
    Huang, CH
    Tang, AD
    Zhang, XC
    Yang, WG
    MATERIALS RESEARCH BULLETIN, 2005, 40 (10) : 1690 - 1695
  • [10] Microwave-assisted preparation of silver nanoparticles
    Yamamoto, T
    Wada, Y
    Sakata, T
    Mori, H
    Goto, M
    Hibino, S
    Yanagida, S
    CHEMISTRY LETTERS, 2004, 33 (02) : 158 - 159