Polarization strategies to improve the emission of Si-based light sources emitting at 1.55 μM

被引:4
|
作者
Ramirez, J. M. [1 ]
Jambois, O. [1 ]
Berencen, Y. [1 ]
Navarro-Urrios, D. [1 ]
Anopchenko, A. [2 ]
Marconi, A. [2 ]
Prtljaga, N. [2 ]
Daldosso, N. [4 ]
Pavesi, L. [2 ]
Colonna, J. -P. [3 ]
Fedeli, J. -M. [3 ]
Garrido, B. [1 ]
机构
[1] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain
[2] Univ Trento, Dept Phys, Nanosci Lab, I-38123 Trento, Italy
[3] CEA, Leti, F-38054 Grenoble 9, France
[4] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
Silicon nanocrystals (Si-ncs); Erbium; Pulsed voltage; Electroluminescence; ERBIUM-DOPED SILICON; ENERGY-TRANSFER; POROUS SILICON; OPTICAL GAIN; QUANTUM DOTS; ELECTROLUMINESCENCE; NANOCRYSTALS; LUMINESCENCE; EFFICIENCY; ER;
D O I
10.1016/j.mseb.2011.12.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 degrees C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:734 / 738
页数:5
相关论文
共 50 条
  • [41] Efficient blue light emission from silicon -: The first integrated Si-based optocoupler
    Rebohle, L
    von Borany, J
    Borchert, D
    Fröb, H
    Gebel, T
    Helm, M
    Möller, W
    Skorupa, W
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (07) : G57 - G60
  • [42] Light-emission potential of Si-based nanostructures from calculated absorption coefficient
    Ghosh, S
    Basu, PK
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 30 (05) : 352 - 355
  • [43] 1.55 μm Light Emitter Based on Dislocation D1-Emission in Silicon
    Kittler, Martin
    Reiche, Manfred
    Arguirov, Tzanimir
    2013 28TH SYMPOSIUM ON MICROELECTRONICS TECHNOLOGY AND DEVICES (SBMICRO 2013), 2013,
  • [44] Thermal enhancement of 1.6 μm electroluminescence from a Si-based light-emitting diode with β-FeSi2 active region
    Li, C
    Ozawa, Y
    Suemasu, T
    Hasegawa, F
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2004, 43 (11B): : L1492 - L1494
  • [45] Si-based polarization-extinguished waveguide couplers
    Shie, Meng-Shiou
    Lin, Shin-Jia
    Ku, Kai-Ning
    Liang, Hsiao-Yao
    Lee, Ming-Chang M.
    Shieh, Jia-Ming
    2010 7TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP), 2010, : 135 - 137
  • [46] A miniaturizable integrated Si-based light modulator
    Sciuto, A
    Libertino, S
    Coffa, S
    Coppola, G
    Optoelectronic Integration on Silicon II, 2005, 5730 : 94 - 101
  • [47] Erbium in Si-based light confining structures
    Lipson, M
    Chen, T
    Chen, K
    Duan, X
    Kimerling, LC
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 81 (1-3): : 36 - 39
  • [48] Electric field-induced fabrication of microscopic Si-based optoelectronic devices for 1.55 and 1.16 μm IR electroluminescence
    Chernyak, L
    Ghabboun, J
    Lyahovitskaya, V
    Cahen, D
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 81 (1-3): : 113 - 115
  • [49] Ellipsometry and spectroscopy on 1.55 μm emitting Ge islands in Si for photonic applications
    Lavchiev, V. M.
    Schade, U.
    Hesser, G.
    Chen, G.
    Jantsch, W.
    PHYSICAL REVIEW B, 2012, 86 (12):
  • [50] Fabrication of 1.55-μm Si-based resonant cavity enhanced photodetectors using sol-gel bonding
    Mao, RW
    Li, CB
    Zuo, YH
    Cheng, BW
    Teng, XG
    Luo, LP
    Yu, JZ
    Wang, QM
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (08) : 1930 - 1932