Bilinear multipliers of small Lebesgue spaces

被引:0
|
作者
Kulak, Oznur [1 ]
Gurkanli, A. Turan [2 ]
机构
[1] Amasya Univ, Fac Arts & Sci, Dept Math, Amasya, Turkey
[2] Istanbul Arel Univ, Fac Sci & Letters, Dept Math & Comp Sci, Istanbul, Turkey
关键词
Bilinear multipliers; grand Lebesgue spaces; small Lebesgue spaces; GRAND;
D O I
10.3906/mat-2101-94
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact abelian metric group with Haar measure lambda and (G) over cap its dual with Haar measure mu. Assume that 1 < p(i) < infinity, p(i)' = p(i)/p(i)-1, (i = 1, 2, 3) and theta >= 0. Let L-(pi' ,L-theta (G), (i = 1, 2, 3) be small Lebesgue spaces. A bounded sequence m(xi, eta) defined on G (over cap) x G (over cap) is said to be a bilinear multiplier on G of type [(p'(1); (p'(2); (p'(3)]. if the bilinear operator B-m associated with the symbol m B-m (f, g) (x) = Sigma(delta is an element of G)Sigma(t is an element of G) (f) over cap (s) (g) over cap (t) m(s, t) (s + t, x) defines a bounded bilinear operator from L-(p'1,L- theta (G) x L-(p2',L-theta (G) into L-(p3',L-theta (G). We denote by BM theta [(p(1)' ; (p(2)' ; (p(3)'] the space of all bilinear multipliers of type [(p(1)'; (p(2)'; (p(3)'](theta). In this paper, we discuss some basic properties of the space BM. [(p(1)'; (p(2)'; (p(3)'] and give examples of bilinear multipliers.
引用
收藏
页码:1959 / 1984
页数:26
相关论文
共 50 条
  • [41] Multipliers for Pairs of Grand and Small Lebesgue Space for p∈(1,∞)
    Berezhnoi, Evgenii I.
    POTENTIAL ANALYSIS, 2025,
  • [42] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 21 - 64
  • [43] Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces
    Kulak, Oznur
    Gurkanli, Ahmet Turan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [44] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    Journal of Fourier Analysis and Applications, 2017, 23 : 21 - 64
  • [45] Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces
    Öznur Kulak
    Ahmet Turan Gürkanlı
    Journal of Inequalities and Applications, 2014
  • [46] Bilinear Fourier multipliers on Orlicz spaces as a dual spaceBilinear Fourier multipliers on Orlicz spaces as a dual spaceS. Öztop and R. Üster
    Serap Öztop
    Rüya Üster
    Advances in Operator Theory, 2025, 10 (2)
  • [47] New properties of small Lebesgue spaces and their applications
    Fiorenza, A
    Rakotoson, JM
    MATHEMATISCHE ANNALEN, 2003, 326 (03) : 543 - 561
  • [48] New properties of small Lebesgue spaces and their applications
    A. Fiorenza
    J.M. Rakotoson
    Mathematische Annalen, 2003, 326 : 543 - 561
  • [49] Boundedness of bilinear Dunkl-Hausdorff operators on products of Lebesgue and Morrey spaces
    Liu, Rui
    Zhao, Fayou
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (09) : 747 - 760
  • [50] BILINEAR FOURIER MULTIPLIERS
    YABUTA, K
    TOHOKU MATHEMATICAL JOURNAL, 1983, 35 (04) : 541 - 555