Multipliers for Pairs of Grand and Small Lebesgue Space for p∈(1,∞)

被引:1
|
作者
Berezhnoi, Evgenii I. [1 ,2 ,3 ]
机构
[1] Yaroslavl State Univ, Dept Math, 14,Sovetskaya St, Yaroslavl 150000, Russia
[2] Southern Fed Univ, Reg Math Ctr, 105-42 Bolshaya Sadovaya, Rostov Na Donu 344090, Russia
[3] Inst Math & Math Modeling, Alma Ata, Kazakhstan
关键词
Banach ideal space; Multiplier space; Pointwise multipliers; Grand Lebesgue spaces; Small Lebesgue spaces; PRODUCTS;
D O I
10.1007/s11118-025-10204-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a wide class of grand Lebesgue spaces, we give an exact description of the multiplier space between a couple of grand Lebesgue spaces from this class. It is shown that in this case the multiplier space for a couple of grand Lebesgue spaces is a grand Lebesgue space structurally constructed from the original spaces. A similar result is true for couples of small Lebesgue spaces.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multipliers for Pairs of Grand or Small Lebesque Spaces in Limiting Cases (p=1 or p = ∞)
    Berezhnoi, Evgenii I.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (03)
  • [2] Bilinear multipliers of small Lebesgue spaces
    Kulak, Oznur
    Gurkanli, A. Turan
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (05) : 1959 - 1984
  • [3] Generalization of the notion of grand Lebesgue space
    Umarkhadzhiev S.M.
    Russian Mathematics, 2014, 58 (4) : 35 - 43
  • [4] Iterated grand and small Lebesgue spaces
    Anatriello, Giuseppina
    COLLECTANEA MATHEMATICA, 2014, 65 (02) : 273 - 284
  • [5] Iterated grand and small Lebesgue spaces
    Giuseppina Anatriello
    Collectanea Mathematica, 2014, 65 : 273 - 284
  • [6] Grand and small norms in Lebesgue spaces
    Berezhnoi, Evgeny
    Karapetyants, Alexey
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 725 - 741
  • [7] Grand and small Lebesgue spaces and their analogs
    Fiorenza, A
    Karadzhov, GE
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (04): : 657 - 681
  • [8] Grand Bochner-Lebesgue space and its associate space
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Rafeiro, Humberto
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) : 2125 - 2136
  • [9] Moser-Trudinger inequality in grand Lebesgue space
    Cerny, Robert
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2015, 26 (02) : 177 - 188
  • [10] Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on ℝn
    S. M. Umarkhadzhiev
    Mathematical Notes, 2018, 104 : 454 - 464