Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries

被引:21
|
作者
Ferras, L. L. [1 ,2 ]
Ford, Neville J. [3 ]
Morgado, Maria Luisa [4 ,5 ]
Rebelo, Magda [6 ,7 ]
McKinley, Gareth H. [8 ]
Nobrega, Joao M. [1 ]
机构
[1] Univ Minho, Inst Polymers & Composites, Campus Azurem Guimaraes, P-4800058 Guimaraes, Portugal
[2] Univ Minho CMAT UM, Ctr Matemat, Campus Azurem Guimaraes, P-4800058 Guimaraes, Portugal
[3] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[4] Univ Tras Os Montes & Alto Douro, UTAD, Inst Super Tecn, CEMAT Ctr Computat & Stochast Math, Quinta Prados, P-5001801 Vila Real, Portugal
[5] Univ Tras Os Montes & Alto Douro, UTAD, Dept Matemat, Quinta Prados, P-5001801 Vila Real, Portugal
[6] Univ NOVA Lisboa, Fac Ciencias & Tecnol, CMA, Quinta Torre, P-2829516 Caparica, Portugal
[7] Univ NOVA Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Quinta Torre, P-2829516 Caparica, Portugal
[8] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
Fractional viscoelastic model; Annular flows; Numerical methods; DIFFUSION-WAVE EQUATION; MAXWELL MODEL; DIFFERENTIAL-EQUATIONS; CONSTITUTIVE EQUATION; NONLINEAR RHEOLOGY; RELAXATION MODULUS; CYLINDERS; SCHEME; FLUIDS;
D O I
10.1016/j.compfluid.2018.07.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we discuss the connection between classical and fractional viscoelastic Maxwell models, presenting the basic theory supporting these constitutive equations, and establishing some background on the admissibility of the fractional Maxwell model. We then develop a numerical method for the solution of two coupled fractional differential equations (one for the velocity and the other for the stress), that appear in the pure tangential annular flow of fractional viscoelastic fluids. The numerical method is based on finite differences, with the approximation of fractional derivatives of the velocity and stress being inspired by the method proposed by Sun and Wu (2006) for the fractional diffusion-wave equation [ Z.Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics 56 (2006) 193-209]. We prove solvability, study numerical convergence of the method, and also discuss the applicability of this method for simulating the rheological response of complex fluids in a real concentric cylinder rheometer. By imposing a torsional step-strain, we observe the different rates of stress relaxation obtained with different values of alpha and beta (the fractional order exponents that regulate the viscoelastic response of the complex fluids). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14 / 33
页数:20
相关论文
共 50 条
  • [31] IMPLICIT NUMERICAL MODELING OF UNSTEADY FLOWS
    AMEIN, M
    CHU, HL
    JOURNAL OF THE HYDRAULICS DIVISION-ASCE, 1976, 102 (09): : 1399 - 1399
  • [32] NUMERICAL SIMULATIONS OF UNSTEADY CASCADE FLOWS
    DORNEY, DJ
    VERDON, JM
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1994, 116 (04): : 665 - 675
  • [33] Laboratory simulation and theoretical analysis of piping mechanism under unsteady flows
    Chen, L. (chenliang@hhu.edu.cn), 1600, Chinese Society of Civil Engineering (35):
  • [34] Numerical accuracy in unsteady compressible flows
    Vardy, A
    Pan, Z
    8TH INTERNATIONAL CONFERENCE ON PRESSURE SURGES: SAFE DESIGN AND OPERATION OF INDUSTRIAL PIPE SYSTEMS, 2000, (39): : 205 - 224
  • [35] A CONTRIBUTION TO THE NUMERICAL PREDICTION OF UNSTEADY FLOWS
    PANDOLFI, M
    AIAA JOURNAL, 1984, 22 (05) : 602 - 610
  • [36] Nonclassical dense gas flows for simple geometries
    Brown, BP
    Argrow, BM
    AIAA JOURNAL, 1998, 36 (10) : 1842 - 1847
  • [37] Numerical and analytical modeling of unsteady viscoelastic flows: The start-up and pulsating test case problems
    Duarte, A. S. R.
    Miranda, A. I. P.
    Oliveira, P. J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2008, 154 (2-3) : 153 - 169
  • [38] Numerical Investigation and Analysis of the Unsteady Supercavity Flows with a Strong Gas Jet
    Zhao, X. Y.
    Xiang, M.
    Zhou, H. C.
    Zhang, W. H.
    JOURNAL OF APPLIED FLUID MECHANICS, 2020, 13 (04) : 1323 - 1337
  • [39] Numerical analysis of unsteady flows in a three-dimensional porous structure
    Inamuro, T
    Yoshino, M
    Ogino, F
    KAGAKU KOGAKU RONBUNSHU, 1999, 25 (06) : 979 - 986
  • [40] Numerical Methods for Viscoelastic Fluid Flows
    Alves, M. A.
    Oliveira, P. J.
    Pinho, F. T.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 53, 2021, 53 : 509 - 541