Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries

被引:21
|
作者
Ferras, L. L. [1 ,2 ]
Ford, Neville J. [3 ]
Morgado, Maria Luisa [4 ,5 ]
Rebelo, Magda [6 ,7 ]
McKinley, Gareth H. [8 ]
Nobrega, Joao M. [1 ]
机构
[1] Univ Minho, Inst Polymers & Composites, Campus Azurem Guimaraes, P-4800058 Guimaraes, Portugal
[2] Univ Minho CMAT UM, Ctr Matemat, Campus Azurem Guimaraes, P-4800058 Guimaraes, Portugal
[3] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[4] Univ Tras Os Montes & Alto Douro, UTAD, Inst Super Tecn, CEMAT Ctr Computat & Stochast Math, Quinta Prados, P-5001801 Vila Real, Portugal
[5] Univ Tras Os Montes & Alto Douro, UTAD, Dept Matemat, Quinta Prados, P-5001801 Vila Real, Portugal
[6] Univ NOVA Lisboa, Fac Ciencias & Tecnol, CMA, Quinta Torre, P-2829516 Caparica, Portugal
[7] Univ NOVA Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Quinta Torre, P-2829516 Caparica, Portugal
[8] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
Fractional viscoelastic model; Annular flows; Numerical methods; DIFFUSION-WAVE EQUATION; MAXWELL MODEL; DIFFERENTIAL-EQUATIONS; CONSTITUTIVE EQUATION; NONLINEAR RHEOLOGY; RELAXATION MODULUS; CYLINDERS; SCHEME; FLUIDS;
D O I
10.1016/j.compfluid.2018.07.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we discuss the connection between classical and fractional viscoelastic Maxwell models, presenting the basic theory supporting these constitutive equations, and establishing some background on the admissibility of the fractional Maxwell model. We then develop a numerical method for the solution of two coupled fractional differential equations (one for the velocity and the other for the stress), that appear in the pure tangential annular flow of fractional viscoelastic fluids. The numerical method is based on finite differences, with the approximation of fractional derivatives of the velocity and stress being inspired by the method proposed by Sun and Wu (2006) for the fractional diffusion-wave equation [ Z.Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Applied Numerical Mathematics 56 (2006) 193-209]. We prove solvability, study numerical convergence of the method, and also discuss the applicability of this method for simulating the rheological response of complex fluids in a real concentric cylinder rheometer. By imposing a torsional step-strain, we observe the different rates of stress relaxation obtained with different values of alpha and beta (the fractional order exponents that regulate the viscoelastic response of the complex fluids). (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14 / 33
页数:20
相关论文
共 50 条
  • [21] ADVANCES IN THE NUMERICAL-ANALYSIS OF LINEARIZED UNSTEADY CASCADE FLOWS
    USAB, WJ
    VERDON, JM
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1991, 113 (04): : 633 - 643
  • [22] Numerical modeling of cavitating flows for simple geometries using FLUENT V6.1
    Palau-Salvador, G.
    Gonzalez-Altozano, P.
    Arviza-Valverde, J.
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2007, 5 (04) : 460 - 469
  • [23] THEORETICAL SIMULATION OF TRANSIENT VISCOELASTIC FLOWS IN A VISCOELASTIC SYSTEM
    RANDRIA, P
    BELLET, D
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1985, 18 (02) : 199 - 210
  • [24] Theoretical and Numerical Analysis of Soil-Pipe Pile Horizontal Vibration Based on the Fractional Derivative Viscoelastic Model
    Zhang, Hao
    Niu, Jienan
    Huang, Ningning
    Yan, Qifang
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [25] Numerical and experimental analysis of viscoelastic flows of polymer melts.
    Baaijens, FPT
    Schoonen, J
    Peters, GWM
    Meijer, HEH
    XIITH INTERNATIONAL CONGRESS ON RHEOLOGY, PROCEEDINGS, 1996, : 419 - 420
  • [26] On the numerical handling of fractional viscoelastic material models in a FE analysis
    Mueller, Sebastian
    Kaestner, Markus
    Brummund, Joerg
    Ulbricht, Volker
    COMPUTATIONAL MECHANICS, 2013, 51 (06) : 999 - 1012
  • [27] On the numerical handling of fractional viscoelastic material models in a FE analysis
    Sebastian Müller
    Markus Kästner
    Jörg Brummund
    Volker Ulbricht
    Computational Mechanics, 2013, 51 : 999 - 1012
  • [28] A finite volume approach for unsteady viscoelastic fluid flows
    Al Moatassime, H
    Esselaoui, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 39 (10) : 939 - 959
  • [29] IMPLICIT NUMERICAL MODELING OF UNSTEADY FLOWS
    AMEIN, M
    CHU, HL
    JOURNAL OF THE HYDRAULICS DIVISION-ASCE, 1975, 101 (NHY6): : 717 - 731
  • [30] IMPLICIT NUMERICAL MODELING OF UNSTEADY FLOWS
    FRANZ, DD
    JOURNAL OF THE HYDRAULICS DIVISION-ASCE, 1976, 102 (01): : 122 - 124