Biosensor based on a nanowire field-effect transistor for the determination of prostate specific antigen

被引:10
|
作者
Rubtsova, Maya [1 ]
Presnova, Galina [1 ]
Presnov, Denis [2 ,3 ]
Krupenin, Vladimir [3 ]
Grigorenko, Vitaly [1 ]
Egorov, Alexey [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Chem Fac, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
来源
BIOSENSORS 2016 | 2017年 / 27卷
基金
俄罗斯基础研究基金会;
关键词
biosensor; nanowire field-effect transistor; prostate specific antitigen (PSA); gold nanoparticles; covalent immobilization;
D O I
10.1016/j.protcy.2017.04.099
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We report about a label-free and fast assay based on nanowire field-effect transistor (NW FET) for determination of PSA in human serum. Functionalization of NWs was performed by a new method using 5 nm gold nanoparticles (GNPs), which provides oriented covalent attachment of antibody half-fragments via their thiol groups. We use the GNPs to increase the effective surfaceto- volume ratio of the silicon nanowires, which resulted in higher sensitivity to pH and improved electrical performance of the biosensors. NW FETs demonstrated high sensitivity and the widest range of detectable PSA concentrations. The presented biosensor was applied to human serum samples with different PSA content, yielding promising results for use in real sample assessment. The sensitivity achieved by the biosensor was 2 orders of magnitude higher than the well-established ELISA method. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:234 / 235
页数:2
相关论文
共 50 条
  • [31] Special Issue: Nanowire Field-Effect Transistor (FET)
    Seoane, Natalia
    Garcia-Loureiro, Antonio
    Kalna, Karol
    MATERIALS, 2020, 13 (08)
  • [32] Resolving ambiguities in nanowire field-effect transistor characterization
    Heedt, Sebastian
    Otto, Isabel
    Sladek, Kamil
    Hardtdegen, Hilde
    Schubert, Juergen
    Demarina, Natalia
    Lueth, Hans
    Gruetzmacher, Detlev
    Schaepers, Thomas
    NANOSCALE, 2015, 7 (43) : 18188 - 18197
  • [33] The research on suspended ZnO nanowire field-effect transistor
    Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
    不详
    Chin. Phys., 2009, 4 (1594-1597):
  • [34] AN ION SENSITIVE FIELD-EFFECT TRANSISTOR FOR BIOSENSOR APPLICATION
    BERG, P
    NABAUER, A
    RUGE, I
    BIOSENSORS : APPLICATIONS IN MEDICINE, ENVIRONMENTAL PROTECTION AND PROCESS CONTROL, 1989, 13 : 159 - 163
  • [35] CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization
    Duy Phu Tran
    Thuy Thi Thanh Pham
    Wolfrum, Bernhard
    Offenhaeusser, Andreas
    Thierry, Benjamin
    MATERIALS, 2018, 11 (05)
  • [36] The Impact of Different Channel Doping Concentrations on the Performance of Polycrystalline Silicon Nanowire Field-effect Transistor Biosensor
    Fathil, M. F. M.
    Tamjis, N.
    Arshad, M. K. Md
    Nuzaihan, M. M. N.
    Rahman, S. F. A.
    Ayub, R. M.
    Ruslinda, A. R.
    Hashim, U.
    Ong, C. C.
    Abdullah, R. F.
    Ghazali, M. H. M.
    4TH ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2018 (EGM 2018), 2018, 2045
  • [37] Double-Gate Nanowire Field Effect Transistor for a Biosensor
    Ahn, Jae-Hyuk
    Choi, Sung-Jin
    Han, Jin-Woo
    Park, Tae Jung
    Lee, Sang Yup
    Choi, Yang-Kyu
    NANO LETTERS, 2010, 10 (08) : 2934 - 2938
  • [38] Nanowire Field-Effect Transistor-Based Biosensors as a Tool for Life Science
    Chen, Yit-Tsong
    SOLID-STATE ELECTRONICS AND PHOTONICS IN BIOLOGY AND MEDICINE, 2014, 64 (16): : 23 - 32
  • [39] ZnO nanorods array based field-effect transistor biosensor for phosphate detection
    Ahmad, Rafiq
    Ahn, Min-Sang
    Hahn, Yoon-Bong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 498 : 292 - 297
  • [40] Fabrication of a Flexible Biosensor Based on an Organic Field-effect Transistor for Lactate Detection
    Minamiki, Tsukuru
    Tokito, Shizuo
    Minami, Tsuyoshi
    ANALYTICAL SCIENCES, 2019, 35 (01) : 103 - 106