Resolving ambiguities in nanowire field-effect transistor characterization

被引:29
|
作者
Heedt, Sebastian [1 ,2 ]
Otto, Isabel [1 ,2 ]
Sladek, Kamil [1 ,2 ]
Hardtdegen, Hilde [1 ,2 ]
Schubert, Juergen [1 ,2 ]
Demarina, Natalia [2 ,3 ]
Lueth, Hans [1 ,2 ]
Gruetzmacher, Detlev [1 ,2 ]
Schaepers, Thomas [1 ,2 ]
机构
[1] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[2] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst PGI 2, D-52425 Julich, Germany
关键词
INAS NANOWIRES; SEMICONDUCTOR NANOWIRE; ELECTRON-MOBILITY; BAND PARAMETERS; HETEROSTRUCTURES; LITHOGRAPHY; SURFACES;
D O I
10.1039/c5nr03608a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have modeled InAs nanowires using finite element methods considering the actual device geometry, the semiconducting nature of the channel and surface states, providing a comprehensive picture of charge distribution and gate action. The effective electrostatic gate width and screening effects are taken into account. A pivotal aspect is that the gate coupling to the nanowire is compromised by the concurrent coupling of the gate electrode to the surface/interface states, which provide the vast majority of carriers for undoped nanowires. In conjunction with field-effect transistor (FET) measurements using two gates with distinctly dissimilar couplings, the study reveals the density of surface states that gives rise to a shallow quantum well at the surface. Both gates yield identical results for the electron concentration and mobility only at the actual surface state density. Our method remedies the flaws of conventional FET analysis and provides a straightforward alternative to intricate Hall effect measurements on nanowires.
引用
收藏
页码:18188 / 18197
页数:10
相关论文
共 50 条
  • [1] Nanowire field-effect transistor
    Wernersson, Lars-Erik
    Lind, Erik
    Samuelson, Lars
    Lowgren, Truls
    Ohlsson, Jonas
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4B): : 2629 - 2631
  • [2] Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor
    Natori, K
    Kimura, Y
    Shimizu, T
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (03)
  • [3] Field-effect transistor based on β-SiC nanowire
    Zhou, W. M.
    Fang, F.
    Hou, Z. Y.
    Yan, L. J.
    Zhang, Y. F.
    IEEE ELECTRON DEVICE LETTERS, 2006, 27 (06) : 463 - 465
  • [4] A Silicon Nanowire Ferroelectric Field-Effect Transistor
    Sessi, Violetta
    Simon, Maik
    Mulaosmanovic, Halid
    Pohl, Darius
    Loeffler, Markus
    Mauersberger, Tom
    Fengler, Franz P. G.
    Mittmann, Terence
    Richter, Claudia
    Slesazeck, Stefan
    Mikolajick, Thomas
    Weber, Walter M.
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (04):
  • [5] FIELD-EFFECT TRANSISTOR CHARACTERIZATION
    ROIZES, A
    DAVID, JP
    RECHERCHE AEROSPATIALE, 1990, (02): : 17 - 29
  • [6] Chemical sensing with ZnO nanowire field-effect transistor
    Fan, Zhiyong
    Lu, Jia G.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (04) : 393 - 396
  • [7] The research on suspended ZnO nanowire field-effect transistor
    黎明
    张海英
    郭常新
    徐静波
    付晓君
    Chinese Physics B, 2009, (04) : 1594 - 1597
  • [8] The research on suspended ZnO nanowire field-effect transistor
    Li Ming
    Zhang Hai-Ying
    Guo Chang-Xin
    Xu Jing-Bo
    Fu Xiao-Jun
    CHINESE PHYSICS B, 2009, 18 (04) : 1594 - 1597
  • [9] Semiconducting Nanowire Field-Effect Transistor Biomolecular Sensors
    Stern, Eric
    Vacic, Aleksandar
    Reed, Mark A.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) : 3119 - 3130
  • [10] Special Issue: Nanowire Field-Effect Transistor (FET)
    Seoane, Natalia
    Garcia-Loureiro, Antonio
    Kalna, Karol
    MATERIALS, 2020, 13 (08)