Infinitesimal projective rigidity under Dehn filling

被引:9
|
作者
Heusener, Michael [1 ]
Porti, Joan
机构
[1] Univ Blaise Pascal, Math Lab, UMR CNRS 6620, F-63171 Aubiere, France
关键词
REPRESENTATIONS; DEFORMATIONS; THEOREM;
D O I
10.2140/gt.2011.15.2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To a hyperbolic manifold one can associate a canonical projective structure and a fundamental question is whether or not it can be deformed. In particular, the canonical projective structure of a finite volume hyperbolic manifold with cusps might have deformations which are trivial on the cusps. The aim of this article is to prove that if the canonical projective structure on a cusped hyperbolic manifold M is infinitesimally projectively rigid relative to the cusps, then infinitely many hyperbolic Dehn fillings on M are locally projectively rigid. We analyze in more detail the figure eight knot and the Whitehead link exteriors, for which we can give explicit infinite families of slopes with projectively rigid Dehn fillings.
引用
收藏
页码:2017 / 2071
页数:55
相关论文
共 50 条
  • [1] CONVEX PROJECTIVE GENERALIZED DEHN FILLING
    Choi, Suhyoung
    Lee, Gye-Seon
    Marquis, Ludovic
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (01): : 217 - 266
  • [2] Projective background of the infinitesimal rigidity of frameworks
    Izmestiev, Ivan
    GEOMETRIAE DEDICATA, 2009, 140 (01) : 183 - 203
  • [3] Projective background of the infinitesimal rigidity of frameworks
    Ivan Izmestiev
    Geometriae Dedicata, 2009, 140 : 183 - 203
  • [4] INFINITESIMAL RIGIDITY OF PROJECTIVE SPACES AND COMPLEX QUADRICS
    GASQUI, J
    GOLDSCHMIDT, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 396 : 87 - 121
  • [5] INFINITESIMAL RIGIDITY OF A KIND OF EDGE OF A SURFACE UNDER INFINITESIMAL BENDING
    CHOI, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (03): : 323 - 327
  • [6] Reducing Dehn filling and toroidal Dehn filling
    Boyer, S
    Zhang, X
    TOPOLOGY AND ITS APPLICATIONS, 1996, 68 (03) : 285 - 303
  • [7] Dehn filling Dehn twists
    Dahmani, Francois
    Hagen, Mark
    Sisto, Alessandro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (01) : 28 - 51
  • [8] Persistence of Heegaard structures under Dehn filling
    Rieck, Y
    Sedgwick, E
    TOPOLOGY AND ITS APPLICATIONS, 2001, 109 (01) : 41 - 53
  • [9] A SMALL CLOSED CONVEX PROJECTIVE 4-MANIFOLD VIA DEHN FILLING
    Lee, Gye-Seon
    Marquis, Ludovic
    Riolo, Stefano
    PUBLICACIONS MATEMATIQUES, 2022, 66 (01) : 369 - 403
  • [10] Orderability and Dehn filling
    Culler, Marc
    Dunfield, Nathan M.
    GEOMETRY & TOPOLOGY, 2018, 22 (03) : 1405 - 1457