Dehn filling Dehn twists

被引:5
|
作者
Dahmani, Francois [1 ]
Hagen, Mark [2 ]
Sisto, Alessandro [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, Inst Fourier, Grenoble, France
[2] Univ Bristol, Sch Math, Bristol, Avon, England
[3] Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Mapping class groups; Dehn twists; ISOMETRIC ACTIONS; HYPERBOLIC GROUPS; SUBGROUPS; GEOMETRY; COMPLEX;
D O I
10.1017/prm.2020.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma(g, p) be the genus-g oriented surface with p punctures, with either g > 0 or p > 3. We show that MCG(Sigma(g,p))/DT is acylindrically hyperbolic where DT is the normal subgroup of the mapping class group MCG(Sigma(g,p)) generated by Kth powers of Dehn twists about curves in Sigma(g, p) for suitable K. Moreover, we show that in low complexity MCG(Sigma(g,p))/DT is in fact hyperbolic. In particular, for 3g - 3 + p <= 2, we show that the mapping class group MCG(Sg,p) is fully residually non-elementary hyperbolic and admits an affine isometric action with unbounded orbits on some L-q space. Moreover, if every hyperbolic group is residually finite, then every convex-cocompact subgroup of MCG(Sigma(g,p)) is separable. The aforementioned results follow from general theorems about composite rotating families, in the sense of [13], that come from a collection of subgroups of vertex stabilizers for the action of a group G on a hyperbolic graph X. We give conditions ensuring that the graph X/N is again hyperbolic and various properties of the action of G on X persist for the action of G/N on X/N.
引用
收藏
页码:28 / 51
页数:24
相关论文
共 50 条
  • [1] Reducing Dehn filling and toroidal Dehn filling
    Boyer, S
    Zhang, X
    TOPOLOGY AND ITS APPLICATIONS, 1996, 68 (03) : 285 - 303
  • [2] On the order of Dehn twists
    Keating, Ailsa
    Randal-Williams, Oscar
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 203 - 212
  • [3] The logarithms of Dehn twists
    Kawazumi, Nariya
    Kuno, Yusuke
    QUANTUM TOPOLOGY, 2014, 5 (03) : 347 - 423
  • [4] Roots of Dehn twists
    McCullough, Darryl
    Rajeevsarathy, Kashyap
    GEOMETRIAE DEDICATA, 2011, 151 (01) : 397 - 409
  • [5] ON ROOTS OF DEHN TWISTS
    Monden, Naoyuki
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (03) : 987 - 1001
  • [6] Roots of Dehn twists
    Darryl McCullough
    Kashyap Rajeevsarathy
    Geometriae Dedicata, 2011, 151 : 397 - 409
  • [7] Dehn twists have roots
    Margalit, Dan
    Schleimer, Saul
    GEOMETRY & TOPOLOGY, 2009, 13 : 1495 - 1497
  • [8] DEHN TWISTS AND INVARIANT CLASSES
    Xia, Eugene Z.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1173 - 1183
  • [9] Exotic iterated Dehn twists
    Seidel, Paul
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (06): : 3305 - 3324
  • [10] Dehn twists on nonorientable surfaces
    Stukow, M
    FUNDAMENTA MATHEMATICAE, 2006, 189 (02) : 117 - 147