Dehn filling Dehn twists

被引:5
|
作者
Dahmani, Francois [1 ]
Hagen, Mark [2 ]
Sisto, Alessandro [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, Inst Fourier, Grenoble, France
[2] Univ Bristol, Sch Math, Bristol, Avon, England
[3] Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
Mapping class groups; Dehn twists; ISOMETRIC ACTIONS; HYPERBOLIC GROUPS; SUBGROUPS; GEOMETRY; COMPLEX;
D O I
10.1017/prm.2020.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma(g, p) be the genus-g oriented surface with p punctures, with either g > 0 or p > 3. We show that MCG(Sigma(g,p))/DT is acylindrically hyperbolic where DT is the normal subgroup of the mapping class group MCG(Sigma(g,p)) generated by Kth powers of Dehn twists about curves in Sigma(g, p) for suitable K. Moreover, we show that in low complexity MCG(Sigma(g,p))/DT is in fact hyperbolic. In particular, for 3g - 3 + p <= 2, we show that the mapping class group MCG(Sg,p) is fully residually non-elementary hyperbolic and admits an affine isometric action with unbounded orbits on some L-q space. Moreover, if every hyperbolic group is residually finite, then every convex-cocompact subgroup of MCG(Sigma(g,p)) is separable. The aforementioned results follow from general theorems about composite rotating families, in the sense of [13], that come from a collection of subgroups of vertex stabilizers for the action of a group G on a hyperbolic graph X. We give conditions ensuring that the graph X/N is again hyperbolic and various properties of the action of G on X persist for the action of G/N on X/N.
引用
收藏
页码:28 / 51
页数:24
相关论文
共 50 条
  • [41] Lectures on four-dimensional Dehn twists
    Seidel, Paul
    SYMPLECTIC 4-MANIFOLDS AND ALGEBRAIC SURFACES, 2008, 1938 : 231 - 267
  • [42] Diagonal transformations of graphs and Dehn twists of surfaces
    Nakamoto, A
    Ota, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 70 (02) : 292 - 300
  • [43] PROOF OF THE PENNER THEORY ON THE COMPOSITION OF DEHN TWISTS
    FATHI, A
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1992, 120 (04): : 467 - 484
  • [44] DEHN TWISTS AND PSEUDO-ANOSOV DIFFEOMORPHISMS
    FATHI, A
    INVENTIONES MATHEMATICAE, 1987, 87 (01) : 129 - 151
  • [45] Dynamics of homeomorphisms of the torus homotopic to Dehn twists
    Addas-Zanata, Salvador
    Tal, Fabio A.
    Garcia, Braulio A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 409 - 422
  • [46] Dehn filling and the geometry of unknotting tunnels
    Cooper, Daryl
    Futer, David
    Purcell, Jessica S.
    GEOMETRY & TOPOLOGY, 2013, 17 (03) : 1815 - 1876
  • [47] Hyperbolic Dehn filling in dimension four
    Martelli, Bruno
    Riolo, Stefano
    GEOMETRY & TOPOLOGY, 2018, 22 (03) : 1647 - 1716
  • [48] Explicit Dehn filling and Heegaard splittings
    Futer, David
    Purcell, Jessica S.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (03) : 625 - 650
  • [49] Spherical space forms and Dehn filling
    Bleiler, SA
    Hodgson, CD
    TOPOLOGY, 1996, 35 (03) : 809 - 833
  • [50] CONVEX PROJECTIVE GENERALIZED DEHN FILLING
    Choi, Suhyoung
    Lee, Gye-Seon
    Marquis, Ludovic
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (01): : 217 - 266