Infinitesimal projective rigidity under Dehn filling

被引:9
|
作者
Heusener, Michael [1 ]
Porti, Joan
机构
[1] Univ Blaise Pascal, Math Lab, UMR CNRS 6620, F-63171 Aubiere, France
关键词
REPRESENTATIONS; DEFORMATIONS; THEOREM;
D O I
10.2140/gt.2011.15.2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To a hyperbolic manifold one can associate a canonical projective structure and a fundamental question is whether or not it can be deformed. In particular, the canonical projective structure of a finite volume hyperbolic manifold with cusps might have deformations which are trivial on the cusps. The aim of this article is to prove that if the canonical projective structure on a cusped hyperbolic manifold M is infinitesimally projectively rigid relative to the cusps, then infinitely many hyperbolic Dehn fillings on M are locally projectively rigid. We analyze in more detail the figure eight knot and the Whitehead link exteriors, for which we can give explicit infinite families of slopes with projectively rigid Dehn fillings.
引用
收藏
页码:2017 / 2071
页数:55
相关论文
共 50 条
  • [31] INFINITESIMAL BUNDLES AND PROJECTIVE RELATIVITY
    EVANS, G
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1974, 76 (SEP): : 465 - 471
  • [32] RIGIDITY OF INFINITESIMAL MOMENTUM MAPS
    Esposito, Chiara
    Miranda, Eva
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (02) : 757 - 781
  • [33] Infinitesimal Rigidity of Convex Polytopes
    C. Bauer
    Discrete & Computational Geometry, 1999, 22 : 177 - 192
  • [34] Dehn filling and the geometry of unknotting tunnels
    Cooper, Daryl
    Futer, David
    Purcell, Jessica S.
    GEOMETRY & TOPOLOGY, 2013, 17 (03) : 1815 - 1876
  • [35] Hyperbolic Dehn filling in dimension four
    Martelli, Bruno
    Riolo, Stefano
    GEOMETRY & TOPOLOGY, 2018, 22 (03) : 1647 - 1716
  • [36] Explicit Dehn filling and Heegaard splittings
    Futer, David
    Purcell, Jessica S.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2013, 21 (03) : 625 - 650
  • [37] Spherical space forms and Dehn filling
    Bleiler, SA
    Hodgson, CD
    TOPOLOGY, 1996, 35 (03) : 809 - 833
  • [38] Incompressible maps of surfaces and Dehn filling
    Oertel, U
    TOPOLOGY AND ITS APPLICATIONS, 2004, 136 (1-3) : 189 - 204
  • [39] Dehn filling, volume, and the Jones polynomial
    Futer, David
    Kalfagianni, Efstratia
    Purcell, Jessica S.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 78 (03) : 429 - 464
  • [40] Representing knots by filling Dehn spheres
    Lozano-Rojo, Alvaro
    Vigara, Ruben
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (04)