Certain Weighted Fractional Inequalities via the Caputo-Fabrizio Approach

被引:3
|
作者
Chinchane, Vaijanath L. [1 ]
Nale, Asha B. [2 ]
Panchal, Satish K. [2 ]
Chesneau, Christophe [3 ]
机构
[1] Deogiri Inst Engn & Management Studies, Dept Math, Aurangabad 431005, Maharashtra, India
[2] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
[3] Univ Caen Normandie, Dept Math, F-14000 Caen, France
关键词
inequalities; Caputo-Fabrizio fractional integral operator; weighted fractional inequalities; INTEGRAL-INEQUALITIES;
D O I
10.3390/fractalfract6090495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Caputo-Fabrizio fractional integral operator is one of the important notions of fractional calculus. It is involved in numerous illustrative and practical issues. The main goal of this paper is to investigate weighted fractional integral inequalities using the Caputo-Fabrizio fractional integral operator with non-singular e(-) ((1-delta/delta) (k-s)()), 0 < delta < 1. Furthermore, based on a family of n positive functions defined on [0, infinity), we investigate some new extensions of weighted fractional integral inequalities.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] NEW INTEGRAL INEQUALITIES FOR s-CONVEX FUNCTIONS OF THE SECOND SENSE VIA THE CAPUTO FRACTIONAL DERIVATIVE AND THE CAPUTO-FABRIZIO INTEGRAL OPERATOR
    Kemali, Serap
    Tinaztepe, Gultekin
    Isik, Ilknur Yesilce
    Evcan, Sinem Sezer
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (04) : 1177 - 1188
  • [32] The epidemic COVID-19 model via Caputo-Fabrizio fractional operator
    Kumar, Ajay
    Prakash, Amit
    Baskonus, Haci Mehmet
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [33] Gruss-type fractional inequality via Caputo-Fabrizio integral operator
    Nale, Asha B.
    Panchal, Satish K.
    Chinchane, Vaijanath L.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2022, 14 (02) : 262 - 277
  • [34] PROPERTIES OF A NEW GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Jornet, Marc
    Nieto, Juan J.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3520 - 3538
  • [35] Model of heat with caputo-fabrizio derivative with fractional order
    Alkahtani B.S.T.
    Alkahtani, Badar Saad T., 1600, American Scientific Publishers (13): : 2994 - 2999
  • [36] Implicit Caputo-Fabrizio fractional differential equations with delay
    Krim, Salim
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (04): : 727 - 742
  • [37] Hermite-Jensen-Mercer-Type Inequalities via Caputo-Fabrizio Fractional Integral for h-Convex Function
    Vivas-Cortez, Miguel
    Saleem, Muhammad Shoaib
    Sajid, Sana
    Zahoor, Muhammad Sajid
    Kashuri, Artion
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [38] A New Numerical Approach for Solving Fractional Optimal Control Problems with the Caputo-Fabrizio Fractional Operator
    Ghaderi, Sara
    Effati, Sohrab
    Heydari, Aghileh
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [39] Stability Analysis of Four-Dimensional Fractional Cancer Model via Caputo and Caputo-Fabrizio Derivatives
    Rania Slimani
    Noura Mansouri
    Ameur Ikhlef
    International Journal of Applied and Computational Mathematics, 2024, 10 (6)
  • [40] Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations
    Wu X.
    Chen F.
    Deng S.
    Chaos, Solitons and Fractals: X, 2020, 5