Certain Weighted Fractional Inequalities via the Caputo-Fabrizio Approach

被引:3
|
作者
Chinchane, Vaijanath L. [1 ]
Nale, Asha B. [2 ]
Panchal, Satish K. [2 ]
Chesneau, Christophe [3 ]
机构
[1] Deogiri Inst Engn & Management Studies, Dept Math, Aurangabad 431005, Maharashtra, India
[2] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
[3] Univ Caen Normandie, Dept Math, F-14000 Caen, France
关键词
inequalities; Caputo-Fabrizio fractional integral operator; weighted fractional inequalities; INTEGRAL-INEQUALITIES;
D O I
10.3390/fractalfract6090495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Caputo-Fabrizio fractional integral operator is one of the important notions of fractional calculus. It is involved in numerous illustrative and practical issues. The main goal of this paper is to investigate weighted fractional integral inequalities using the Caputo-Fabrizio fractional integral operator with non-singular e(-) ((1-delta/delta) (k-s)()), 0 < delta < 1. Furthermore, based on a family of n positive functions defined on [0, infinity), we investigate some new extensions of weighted fractional integral inequalities.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation
    Baleanu, Dumitru
    Rezapour, Shahram
    Saberpour, Zohreh
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [22] On Lyapunov-type inequalities for boundary value problems of fractional Caputo-Fabrizio derivative
    Toprakseven, Suayip
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1362 - 1375
  • [23] Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities
    Gurbuz, Mustafa
    Akdemir, Ahmet Ocak
    Rashid, Saima
    Set, Erhan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [24] Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives
    Iqbal, Naveed
    Alshammari, Saleh
    Botmart, Thongchai
    AIMS MATHEMATICS, 2022, 7 (11): : 20401 - 20419
  • [25] A new fractional integral associated with the Caputo-Fabrizio fractional derivative
    Moumen Bekkouche, M.
    Guebbai, H.
    Kurulay, M.
    Benmahmoud, S.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1277 - 1288
  • [26] The Abstract Cauchy Problem with Caputo-Fabrizio Fractional Derivative
    Bravo, Jennifer
    Lizama, Carlos
    MATHEMATICS, 2022, 10 (19)
  • [27] Fractional advection differential equation within Caputo and Caputo-Fabrizio derivatives
    Baleanu, Dumitru
    Agheli, Bahram
    Al Qurashi, Maysaa Mohamed
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (12): : 1 - 8
  • [28] Cancer treatment model with the Caputo-Fabrizio fractional derivative
    Mustafa Ali Dokuyucu
    Ercan Celik
    Hasan Bulut
    Haci Mehmet Baskonus
    The European Physical Journal Plus, 133
  • [29] Caputo-Fabrizio fractional differential equations with instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    AIMS MATHEMATICS, 2021, 6 (03): : 2932 - 2946
  • [30] Cancer treatment model with the Caputo-Fabrizio fractional derivative
    Dokuyucu, Mustafa Ali
    Celik, Ercan
    Bulut, Hasan
    Baskonus, Haci Mehmet
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):