Certain Weighted Fractional Inequalities via the Caputo-Fabrizio Approach

被引:3
|
作者
Chinchane, Vaijanath L. [1 ]
Nale, Asha B. [2 ]
Panchal, Satish K. [2 ]
Chesneau, Christophe [3 ]
机构
[1] Deogiri Inst Engn & Management Studies, Dept Math, Aurangabad 431005, Maharashtra, India
[2] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
[3] Univ Caen Normandie, Dept Math, F-14000 Caen, France
关键词
inequalities; Caputo-Fabrizio fractional integral operator; weighted fractional inequalities; INTEGRAL-INEQUALITIES;
D O I
10.3390/fractalfract6090495
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Caputo-Fabrizio fractional integral operator is one of the important notions of fractional calculus. It is involved in numerous illustrative and practical issues. The main goal of this paper is to investigate weighted fractional integral inequalities using the Caputo-Fabrizio fractional integral operator with non-singular e(-) ((1-delta/delta) (k-s)()), 0 < delta < 1. Furthermore, based on a family of n positive functions defined on [0, infinity), we investigate some new extensions of weighted fractional integral inequalities.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Certain fractional inequalities via the Caputo Fabrizio operator
    Qaisar, Shahid
    Munir, Arslan
    Budak, Huseyin
    FILOMAT, 2023, 37 (29) : 10093 - 10106
  • [2] Fundamental results on weighted Caputo-Fabrizio fractional derivative
    Al-Refai, Mohammed
    Jarrah, Abdulla M.
    CHAOS SOLITONS & FRACTALS, 2019, 126 : 7 - 11
  • [3] Some Caputo-Fabrizio fractional integral inequalities with applications
    Qaisar, Shahid
    Munir, Arslan
    Naeem, Muhammad
    Budak, Huseyin
    FILOMAT, 2024, 38 (16) : 5905 - 5923
  • [4] Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator
    Chen, Lanxin
    Zhang, Junxian
    Saleem, Muhammad Shoaib
    Ahmed, Imran
    Waheed, Shumaila
    Pan, Lishuang
    AIMS MATHEMATICS, 2021, 6 (06): : 6377 - 6389
  • [5] On Some Fractional Integral Inequalities Involving Caputo-Fabrizio Integral Operator
    Chinchane, Vaijanath L.
    Nale, Asha B.
    Panchal, Satish K.
    Chesneau, Christophe
    AXIOMS, 2021, 10 (04)
  • [6] New inequalities via Caputo-Fabrizio integral operator with applications
    Yang, Hong
    Qaisar, Shahid
    Munir, Arslan
    Naeem, Muhammad
    AIMS MATHEMATICS, 2023, 8 (08): : 19391 - 19412
  • [7] A fractional order alcoholism model via Caputo-Fabrizio derivative
    Dokuyucu, Mustafa Ali
    AIMS MATHEMATICS, 2020, 5 (02): : 781 - 797
  • [8] FRACTIONAL DYNAMICS OF CORONAVIRUS WITH COMORBIDITY VIA CAPUTO-FABRIZIO DERIVATIVE
    Bonyah, E.
    Juga, M.
    Fatmawati
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [9] New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator
    Tariq, Muhammad
    Ahmad, Hijaz
    Shaikh, Abdul Ghafoor
    Sahoo, Soubhagya Kumar
    Khedher, Khaled Mohamed
    Gia, Tuan Nguyen
    AIMS MATHEMATICS, 2021, 7 (03): : 3440 - 3455
  • [10] New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo-Fabrizio Operator
    Sahoo, Soubhagya Kumar
    Mohammed, Pshtiwan Othman
    Kodamasingh, Bibhakar
    Tariq, Muhammad
    Hamed, Y. S.
    FRACTAL AND FRACTIONAL, 2022, 6 (03)