Broadband and tunable time-resolved THz system using argon-filled hollow-core photonic crystal fiber

被引:24
|
作者
Cui, Wei [1 ,2 ]
Schiff-Kearn, Aidan W. [1 ,2 ]
Zhang, Emily [1 ,2 ]
Couture, Nicolas [1 ,2 ]
Tani, Francesco [2 ,3 ]
Novoa, David [2 ,3 ]
Russell, Philip St J. [2 ,3 ]
Menard, Jean-Michel [1 ,2 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[2] Max Planck Ctr Extreme & Quantum Photon, Ottawa, ON K1N 6N5, Canada
[3] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
ULTRAFAST NONLINEAR OPTICS; TERAHERTZ PULSES; AVERAGE POWER; SPECTROSCOPY; DYNAMICS; DOMAIN;
D O I
10.1063/1.5043270
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate broadband, frequency-tunable, phase-locked terahertz (THz) generation and detection based on difference frequency mixing of temporally and spectrally structured near-infrared (NIR) pulses. The pulses are prepared in a gas-filled hollow-core photonic crystal fiber (HC-PCF), whose linear and nonlinear optical properties can be adjusted by tuning the gas pressure. This permits optimization of both the spectral broadening of the pulses due to self-phase modulation (SPM) and the generated THz spectrum. The properties of the prepared pulses, measured at several different argon gas pressures, agree well with the results of numerical modeling. Using these pulses, we perform difference frequency generation in a standard time-resolved THz scheme. As the argon pressure is gradually increased from 0 to 10 bar, the NIR pulses spectrally broaden from 3.5 to 8.7 THz, while the measured THz bandwidth increases correspondingly from 2.3 to 4.5 THz. At 10 bar, the THz spectrum extends to 6 THz, limited only by the spectral bandwidth of our time-resolved detection scheme. Interestingly, SPM in the HC-PCF produces asymmetric spectral broadening that may be used to enhance the generation of selected THz frequencies. This scheme, based on a HC-PCF pulse shaper, holds great promise for broadband time-domain spectroscopy in the THz, enabling the use of compact and stable ultrafast laser sources with relatively narrow linewidths (<4 THz). (C) 2018 Author( s).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Transient quantum coherent effects in the acetylene-filled hollow-core photonic crystal fiber
    Stepanov, S.
    Rodriguez Casillas, N.
    Ocegueda Miramontes, M.
    Hernandez Hernandez, E.
    SLOW LIGHT, FAST LIGHT, AND OPTO- ATOMIC PRECISION METROLOGY X, 2017, 10119
  • [42] Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber
    Schmidt, O. A.
    Garbos, M. K.
    Euser, T. G.
    Russell, P. St. J.
    PHYSICAL REVIEW LETTERS, 2012, 109 (02)
  • [43] Optofluidic immobility of particles trapped in liquid-filled hollow-core photonic crystal fiber
    Garbos, M. K.
    Euser, T. G.
    Russell, P. St. J.
    OPTICS EXPRESS, 2011, 19 (20): : 19643 - 19652
  • [44] Broadband orbital angular momentum transmission using a hollow-core photonic bandgap fiber
    Li, Haisu
    Ren, Guobin
    Lian, Yudong
    Zhu, Bofeng
    Tang, Min
    Zhao, Yuanchu
    Jian, Shuisheng
    OPTICS LETTERS, 2016, 41 (15) : 3591 - 3594
  • [45] Supercritical xenon-filled hollow-core photonic bandgap fiber
    Lynch-Klarup, K. E.
    Mondloch, E. D.
    Raymer, M. G.
    Arrestier, D.
    Gerome, F.
    Benabid, F.
    OPTICS EXPRESS, 2013, 21 (11): : 13726 - 13732
  • [46] A novel method of using hollow-core photonic crystal fiber as a Raman biosensor
    Naji, Majid
    Khetani, Altaf
    Lagali, Neil
    Munger, Rejean
    Anis, Hanan
    NANOSCALE IMAGING, SENSING, AND ACTUATION FOR BIOMEDICAL APPLICATIONS V, 2008, 6865
  • [47] Evanescent-wave sensing using a hollow-core photonic crystal fiber
    Jensen, JB
    Hoiby, PE
    Pedersen, LH
    Carlsen, A
    Nielsen, LB
    Bjarklev, A
    Hansen, TP
    OPTICAL FIBERS AND SENSORS FOR MEDICAL APPLICATIONS IV, 2004, 5317 : 139 - 146
  • [48] Biological sensor based on a hollow-core photonic crystal fiber
    Malinin, A. V.
    Skibina, Yu. S.
    Mikhailova, N. A.
    Silokhin, I. Yu.
    Chainikov, M. V.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (04) : 362 - 364
  • [49] Bandgaps of the Chalcogenide Glass Hollow-Core Photonic Crystal Fiber
    Li Shu-Guang
    Zhou Hong-Song
    Yin Guo-Bing
    CHINESE PHYSICS LETTERS, 2011, 28 (11)
  • [50] Trapping of ultracold atoms in a hollow-core photonic crystal fiber
    Christensen, Caleb A.
    Will, Sebastian
    Saba, Michele
    Jo, Gyu-Boong
    Shin, Yong-Il
    Ketterle, Wolfgang
    Pritchard, David
    PHYSICAL REVIEW A, 2008, 78 (03):