Arrhythmia detection using deep convolutional neural network with long duration ECG signals

被引:497
|
作者
Yildirim, Ozal [1 ]
Plawiak, Pawel [2 ]
Tan, Ru-San [3 ,4 ]
Acharya, U. Rajendra [5 ,6 ,7 ]
机构
[1] Munzur Univ, Dept Comp Engn, Tunceli, Turkey
[2] Cracow Univ Technol, Fac Phys Math & Comp Sci, Inst Telecomp, Krakow, Poland
[3] Natl Heart Ctr Singapore, Dept Cardiol, Singapore, Singapore
[4] Duke NUS Med Sch, Singapore, Singapore
[5] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore
[6] Singapore Sch Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[7] Taylors Univ, Fac Hlth & Med Sci, Sch Med, Subang Jaya 47500, Malaysia
关键词
cardiac arrhythmias; ECG classification; Deep learning; Convolutional neural networks; HEARTBEAT CLASSIFICATION; AUTOMATED DETECTION; FEATURE-SELECTION; LEARNING APPROACH; RECOGNITION; TRANSFORM; IDENTIFICATION; METHODOLOGY; CLASSIFIERS; ALGORITHM;
D O I
10.1016/j.compbiomed.2018.09.009
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents a new deep learning approach for cardiac arrhythmia (17 classes) detection based on long duration electrocardiography (ECG) signal analysis. Cardiovascular disease prevention is one of the most important tasks of any health care system as about 50 million people are at risk of heart disease in the world. Although automatic analysis of ECG signal is very popular, current methods are not satisfactory. The goal of our research was to design a new method based on deep learning to efficiently and quickly classify cardiac arrhythmias. Described research are based on 1000 ECG signal fragments from the MIT - BIH Arrhythmia database for one lead (MLII) from 45 persons. Approach based on the analysis of 10-s ECG signal fragments (not a single QRS complex) is applied (on average, 13 times less classifications/analysis). A complete end-to-end structure was designed instead of the hand-crafted feature extraction and selection used in traditional methods. Our main contribution is to design a new 1D-Convolutional Neural Network model (1D-CNN). The proposed method is 1) efficient, 2) fast (real-time classification) 3) non-complex and 4) simple to use (combined feature extraction and selection, and classification in one stage). Deep 1D-CNN achieved a recognition overall accuracy of 17 cardiac arrhythmia disorders (classes) at a level of 91.33% and classification time per single sample of 0.015 s. Compared to the current research, our results are one of the best results to date, and our solution can be implemented in mobile devices and cloud computing.
引用
收藏
页码:411 / 420
页数:10
相关论文
共 50 条
  • [31] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [32] Using Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS)
    Santamaria-Granados, Luz
    Munoz-Organero, Mario
    Ramirez-Gonzalez, Gustavo
    Abdulhay, Enas
    Arunkumar, N.
    IEEE ACCESS, 2019, 7 : 57 - 67
  • [33] Deep Convolutional Neural Network for Automated Detection of Mind Wandering using EEG Signals
    Hosseini, Seyedroohollah
    Guo, Xuan
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 314 - 319
  • [34] Deep convolutional neural network for the automated detection of Subthalamic nucleus using MER signals
    Hosny, Mohamed
    Zhu, Minwei
    Gao, Wenpeng
    Fu, Yili
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 356
  • [35] ECG Arrhythmia Classification Using STFT-Based Spectrogram and Convolutional Neural Network
    Huang, Jingshan
    Chen, Binqiang
    Yao, Bin
    He, Wangpeng
    IEEE ACCESS, 2019, 7 : 92871 - 92880
  • [36] Convolutional squeeze-and-excitation network for ECG arrhythmia detection
    Ge, Rongjun
    Shen, Tengfei
    Zhou, Ying
    Liu, Chengyu
    Zhang, Libo
    Yang, Benqiang
    Yan, Ying
    Coatrieux, Jean-Louis
    Chen, Yang
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 121
  • [37] Detection of shockable ventricular cardiac arrhythmias from ECG signals using FFREWT filter-bank and deep convolutional neural network
    Panda, Rohan
    Jain, Sahil
    Tripathy, R. K.
    Acharya, U. Rajendra
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 124
  • [38] A novel deep convolutional neural network for arrhythmia classification
    Dang, Hao
    Sun, Muyi
    Zhang, Guanhong
    Zhou, Xiaoguang
    Chang, Qing
    Xu, Xiangdong
    2019 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2019, : 7 - 11
  • [39] Congestive Heart Failure Detection From ECG Signals Using Deep Residual Neural Network
    Prabhakararao, Eedara
    Dandapat, Samarendra
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (05): : 3008 - 3018
  • [40] The Impact of Using Data Augmentation Techniques for Automatic Detection of Arrhythmia With a Deep Convolutional Neural Network Model
    Degachi, Oumayma
    Ouni, Kais
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,