Sensitivity analysis and uncertainty estimation for tephra dispersal models

被引:66
|
作者
Scollo, Simona [1 ]
Tarantola, Stefano [3 ]
Bonadonna, Costanza [2 ]
Coltelli, Mauro [1 ]
Saltelli, Andrea [3 ]
机构
[1] Ist Nazl Geofis & Vulcanol, Sez Catania, I-95123 Catania, Italy
[2] Univ Geneva, Sect Sci Terre, CERG, CH-1205 Geneva, Switzerland
[3] Commiss European Communities, Joint Res Ctr, IPSC, I-21020 Ispra, Italy
关键词
D O I
10.1029/2006JB004864
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sensitivity analysis and uncertainty estimation are crucial to the validation and calibration of numerical models. In this paper we present the application of sensitivity analyses, parameter estimations and Monte-Carlo uncertainty analyses on TEPHRA, an advection-diffusion model for the description of particle dispersion and sedimentation from volcanic plumes. The model and the related sensitivity analysis are tested on two sub-plinian eruptions: the 22 July 1998 eruption of Etna volcano (Italy) and the 17 June 1996 eruption of Ruapehu volcano (New Zealand). Sensitivity analyses are key to (1) constrain crucial eruption parameters (e. g., total erupted mass) (2) reduce the number of variables by eliminating non-influential parameters (e. g., particle density) and (3) investigate the interactions among all input parameters (plume height, total grain-size distribution, diffusion coefficient, fall-time threshold and mass-distribution parameter). For the two test cases, we found that the total erupted mass significantly affects the model outputs and, therefore, it can be accurately estimated from field data of the fallout deposit, whereas the particle density can be fixed at its nominal value because it has negligible effects on the model predictions.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Global sensitivity analysis of parameter uncertainty in landscape evolution models
    Skinner, Christopher J.
    Coulthard, Tom J.
    Schwanghart, Wolfgang
    Van De Wiel, Marco J.
    Hancock, Greg
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (12) : 4873 - 4888
  • [22] AN INVESTIGATION OF UNCERTAINTY AND SENSITIVITY ANALYSIS TECHNIQUES FOR COMPUTER-MODELS
    IMAN, RL
    HELTON, JC
    RISK ANALYSIS, 1988, 8 (01) : 71 - 90
  • [23] Uncertainty Quantification and Sensitivity Analysis of Closure Parameters of Transition Models
    Song, Ziming
    Liu, Zaijie
    Yan, Chao
    JOURNAL OF AEROSPACE ENGINEERING, 2023, 36 (01)
  • [24] ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS
    Liang, Bin
    Mahadevan, Sankaran
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2011, 1 (02) : 147 - 161
  • [25] Generative models uncertainty estimation
    Anderlini, L.
    Chimpoesh, C.
    Kazeev, N.
    Shishigina, A.
    20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438
  • [26] Uncertainty analysis for estimation of landfill emissions and data sensitivity for the input variation
    J. Szemesova
    M. Gera
    Climatic Change, 2010, 103 : 37 - 54
  • [27] Uncertainty analysis for estimation of landfill emissions and data sensitivity for the input variation
    Szemesova, J.
    Gera, M.
    CLIMATIC CHANGE, 2010, 103 (1-2) : 37 - 54
  • [28] MOESHA: A GENETIC ALGORITHM FOR AUTOMATIC CALIBRATION AND ESTIMATION OF PARAMETER UNCERTAINTY AND SENSITIVITY OF HYDROLOGIC MODELS
    Barnhart, B. L.
    Sawicz, K. A.
    Ficklin, D. L.
    Whittaker, G. W.
    TRANSACTIONS OF THE ASABE, 2017, 60 (04) : 1259 - 1269
  • [29] On the use of AR models for SHM: A global sensitivity and uncertainty analysis framework
    Datteo, Alessio
    Busca, Giorgio
    Quattromani, Gianluca
    Cigada, Alfredo
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2018, 170 : 99 - 115
  • [30] Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis
    Sehrawat, Priyanka
    Sarkar, Debasis
    Kumar, Jitendra
    Industrial and Engineering Chemistry Research, 2022, 61 (25): : 8673 - 8684