Statistical analysis of a lung cancer spectral histopathology (SHP) data set

被引:27
|
作者
Mu, Xinying [1 ,2 ,3 ]
Kon, Mark [1 ,2 ,3 ]
Ergin, Ayseguel [3 ]
Remiszewski, Stan [3 ]
Akalin, Ali [4 ]
Thompson, Clay M. [3 ,5 ]
Diem, Max [3 ,6 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Boston Univ, Program Bioinformat, Boston, MA 02215 USA
[3] Cireca Theranost, Cambridge, MA 02139 USA
[4] Univ Massachusetts, Sch Med, Dept Pathol, Worcester, MA 01605 USA
[5] Creat Creek LLC, Camano Isl, WA USA
[6] Northeastern Univ, Dept Chem & Chem Biol, Lab Spectral Diag, Boston, MA 02115 USA
关键词
MASS-SPECTROMETRY; TISSUE; CLASSIFICATION; CELLS; SPECTROSCOPY; MICROSPECTROSCOPY; DIFFERENTIATION; ADENOCARCINOMA; MODELS;
D O I
10.1039/c4an01832j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report results on a statistical analysis of an infrared spectral dataset comprising a total of 388 lung biopsies from 374 patients. The method of correlating classical and spectral results and analyzing the resulting data has been referred to as spectral histopathology (SHP) in the past. Here, we show that standard bio-statistical procedures, such as strict separation of training and blinded test sets, result in a balanced accuracy of better than 95% for the distinction of normal, necrotic and cancerous tissues, and better than 90% balanced accuracy for the classification of small cell, squamous cell and adenocarcinomas. Preliminary results indicate that further sub-classification of adenocarcinomas should be feasible with similar accuracy once sufficiently large datasets have been collected.
引用
收藏
页码:2449 / 2464
页数:16
相关论文
共 50 条
  • [41] Statistical learning methods as a preprocessing step for survival analysis: evaluation of concept using lung cancer data
    Behera, Madhusmita
    Fowler, Erin E.
    Owonikoko, Taofeek K.
    Land, Walker H.
    Mayfield, William
    Chen, Zhengjia
    Khuri, Fadlo R.
    Ramalingam, Suresh S.
    Heine, John J.
    BIOMEDICAL ENGINEERING ONLINE, 2011, 10
  • [42] Statistical learning methods as a preprocessing step for survival analysis: evaluation of concept using lung cancer data
    Madhusmita Behera
    Erin E Fowler
    Taofeek K Owonikoko
    Walker H Land
    William Mayfield
    Zhengjia Chen
    Fadlo R Khuri
    Suresh S Ramalingam
    John J Heine
    BioMedical Engineering OnLine, 10
  • [43] Cigarette smoking and changes in the histopathology of lung cancer
    Thun, MJ
    Lally, CA
    Flannery, JT
    Calle, EE
    Flanders, WD
    Heath, CW
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1997, 89 (21): : 1580 - 1586
  • [44] Cigarette smoking and the histopathology of lung cancer - Response
    Minna, JD
    Gazdar, AF
    JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1998, 90 (19) : 1487 - 1488
  • [45] RELATION OF LUNG CANCER HISTOPATHOLOGY TO CIGARETTE SMOKING
    YESNER, R
    AMERICAN JOURNAL OF PATHOLOGY, 1970, 59 (03): : A92 - &
  • [46] UNIFIED CONCEPT OF LUNG-CANCER HISTOPATHOLOGY
    YESNER, R
    PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, 1977, 18 (MAR): : 271 - 271
  • [47] Cigarette smoking and changes in the histopathology of lung cancer
    Holford, TR
    Zheng, TZ
    Mayne, ST
    JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1998, 90 (10) : 783 - 783
  • [48] MAINTENANCE OF A GENETIC DATA SET ON MULTIPLE DATA-BASE AND STATISTICAL-ANALYSIS SYSTEMS
    AGRONOW, SJ
    MARIONA, FG
    KOPPITCH, FC
    MAYEDA, K
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 1982, : 34 - 34
  • [49] Statistical Learning Analysis of Thyroid Cancer Microarray Data
    Petrini, Ivan
    Cecchini, Rocio L.
    Mascaro, Marilina
    Ponzoni, Ignacio
    Carballido, Jessica A.
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, : 90 - 102
  • [50] Classification, Predictive Modelling, and Statistical Analysis of Cancer Data (A)
    Jiang, Hongmei
    An, Lingling
    Baladandayuthapani, Veerabhadran
    Auer, Paul Livermore
    CANCER INFORMATICS, 2014, 13 : 1 - 3