Statistical analysis of a lung cancer spectral histopathology (SHP) data set

被引:27
|
作者
Mu, Xinying [1 ,2 ,3 ]
Kon, Mark [1 ,2 ,3 ]
Ergin, Ayseguel [3 ]
Remiszewski, Stan [3 ]
Akalin, Ali [4 ]
Thompson, Clay M. [3 ,5 ]
Diem, Max [3 ,6 ]
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Boston Univ, Program Bioinformat, Boston, MA 02215 USA
[3] Cireca Theranost, Cambridge, MA 02139 USA
[4] Univ Massachusetts, Sch Med, Dept Pathol, Worcester, MA 01605 USA
[5] Creat Creek LLC, Camano Isl, WA USA
[6] Northeastern Univ, Dept Chem & Chem Biol, Lab Spectral Diag, Boston, MA 02115 USA
关键词
MASS-SPECTROMETRY; TISSUE; CLASSIFICATION; CELLS; SPECTROSCOPY; MICROSPECTROSCOPY; DIFFERENTIATION; ADENOCARCINOMA; MODELS;
D O I
10.1039/c4an01832j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report results on a statistical analysis of an infrared spectral dataset comprising a total of 388 lung biopsies from 374 patients. The method of correlating classical and spectral results and analyzing the resulting data has been referred to as spectral histopathology (SHP) in the past. Here, we show that standard bio-statistical procedures, such as strict separation of training and blinded test sets, result in a balanced accuracy of better than 95% for the distinction of normal, necrotic and cancerous tissues, and better than 90% balanced accuracy for the classification of small cell, squamous cell and adenocarcinomas. Preliminary results indicate that further sub-classification of adenocarcinomas should be feasible with similar accuracy once sufficiently large datasets have been collected.
引用
收藏
页码:2449 / 2464
页数:16
相关论文
共 50 条
  • [21] Statistical Analysis of Search for Set of Sequences in Random and Framed Data
    Bajic, Dragana
    Stefanovic, Cedomir
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 320 - 332
  • [22] THE STATISTICAL PROPERTIES OF GENE-SET ANALYSIS FOR GWAS DATA
    de Leeuw, Christiaan
    Neale, Benjamin
    Heskes, Tom
    Posthuma, Danielle
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2017, 27 : S351 - S351
  • [23] Higher Order Statistical Analysis in Multiresolution Domain - Application to Breast Cancer Histopathology
    Vaishali, Durgamahanthi
    Priya, P. Vishnu
    Govind, Nithyasri
    Prabha, K. Venkat Ratna
    SERVICE-ORIENTED COMPUTING, ICSOC 2020, 2021, 12632 : 495 - 508
  • [24] CHANGING HISTOPATHOLOGY OF RESECTED LUNG CANCER
    Carter, K. G.
    Callaghan, L.
    Miller, D. R.
    Mclay, J. S.
    Kerr, K. M.
    Watt, S. J.
    THORAX, 2009, 64 : A149 - A150
  • [25] Prognostic Factors in Histopathology of Lung Cancer
    Fisseler-Eckhoff, Annette
    CONTROVERSIES IN TREATMENT OF LUNG CANCER, 2010, 42 : 1 - 14
  • [26] Association analysis of the clinical medical case-set based on the data mining in lung cancer
    Hong, Mei
    Lu, Ming
    Lu, Cheng
    Zhu, Yao
    ASIAN JOURNAL OF SURGERY, 2022, 45 (05) : 1158 - 1159
  • [27] Trends in Histopathology of Lung Cancer in Alberta
    Juanita Hatcher
    Douglas C. Dover
    Canadian Journal of Public Health, 2003, 94 : 292 - 296
  • [28] THE CYTOPATHOLOGY AND HISTOPATHOLOGY OF LUNG-CANCER
    LUKEMAN, JM
    MACKAY, B
    SEMINARS IN RESPIRATORY MEDICINE, 1982, 3 (03): : 140 - &
  • [29] Trends in histopathology of lung cancer in Alberta
    Hatcher, J
    Dover, DC
    CANADIAN JOURNAL OF PUBLIC HEALTH-REVUE CANADIENNE DE SANTE PUBLIQUE, 2003, 94 (04): : 292 - 296
  • [30] Cigarette smoking and the histopathology of lung cancer
    Wynder, EL
    Hoffmann, D
    JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1998, 90 (19) : 1486 - 1487